精英家教网 > 高中数学 > 题目详情
6.函数f(x)=2x-lnx的单调递减区间为(  )
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

分析 求出f′(x),在定义域内解不等式f′(x)>0即得单调增区间.

解答 解:f(x))=2x-lnx的定义域为(0,+∞).
f′(x)=2-$\frac{1}{x}$=$\frac{2x-1}{x}$,
令f′(x)<0,解得x<$\frac{1}{2}$,
所以函数f(x)=2x-lnx的单调减区间是(0,$\frac{1}{2}$).
故选:C.

点评 本题考查运用导数研究函数的单调性,注意考函数虑定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点P(0,3)的直线m与椭圆C交于A,B两点,若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过点F1作以F2为圆心|OF2|为半径的圆的切线,Q为切点,若切线段F1Q被双曲线的一条渐近线平分,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,$\frac{sinA}{sinB}=2,BCcosB+ACcosA=1$,则有如下说法:①AB=1;②△ABC面积的最大值为$\frac{1}{3}$;③当△ABC面积取到的最大值时,$AC=\frac{2}{3}$;则上述说法正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法不正确的是(  )
A.综合法是由因导果的顺推证法
B.分析法是执果索因的逆推证法
C.分析法是从要证的结论出发,寻求使它成立的充分条件
D.综合法与分析法在同一题的证明中不可能同时采用

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个屋顶的某一个斜面成等腰梯形,最上面一层铺了21块瓦片,往下每一层多铺一块瓦片,斜面上铺了20层瓦片,问共铺了多少块瓦片.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,可推广为$x+\frac{a}{x^n}≥n+1$,则a=nn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在棱长为a的正方体ABCD-A1B1C1D1中,点A到平面A1BD的距离为$\frac{\sqrt{3}}{3}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

同步练习册答案