精英家教网 > 高中数学 > 题目详情
15.设a1,a2,b1,b2都是非零实数,则“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”是“不等式a1x+b1>0与a2x+b2>0的解集相同”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义分别判断其充分性和必要性即可.

解答 解:∵若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,如取a1=b1=1,a2=b2=-1,
关于x的不等式a1x+b1>0与a2x+b2>0即不等式x+1>0与-x-1>0的解集不相同,
∴“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”不能推出“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”,
反之,“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”⇒“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”,
∴“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”是“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”的必要非充分条件.
故选:B.

点评 本题考查必要条件、充分条件和充要条件的性质和应用及一元一次不等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),当x∈[0,$\frac{π}{2}}$]时,f(x)的最大值、最小值分别为(  )
A.$\sqrt{2}$、-$\frac{{\sqrt{2}}}{2}$B.1、-$\frac{1}{2}$C.1、-$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$、$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x2-2x+m在[3,+∞)上的最小值为1,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i为虚数单位,(2+i)•z=-1+2i,则复数z=(  )
A.$\frac{4}{3}$+iB.-iC.iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,则z=-x+2y的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知角α=-$\frac{π}{4}$,则α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=$\frac{π}{3}$,O为△ABC的内心,则$\overrightarrow{OA}$$•\overrightarrow{AB}$的值为$\sqrt{3}-3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3-3x2+5在区间$[{1,\frac{5}{2}}]$上的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=90°,AB=AD=AP=2,BC=1.
(1)求点A到平面PCD的距离;
(2)若点Q为线段BP的中点,求直线CQ与平面ADQ所成角的大小.

查看答案和解析>>

同步练习册答案