精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),当x∈[0,$\frac{π}{2}}$]时,f(x)的最大值、最小值分别为(  )
A.$\sqrt{2}$、-$\frac{{\sqrt{2}}}{2}$B.1、-$\frac{1}{2}$C.1、-$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$、$\frac{{\sqrt{2}}}{2}$

分析 根据正弦函数的图象与性质,即可求出函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$)在x∈[0,$\frac{π}{2}}$]上的最大、最小值.

解答 解:因为函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),
当x∈[0,$\frac{π}{2}}$]时,2x∈[0,π],2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$];
所以sin(2x-$\frac{π}{6}$)的最大值是1,最小值是-$\frac{1}{2}$;
所以函数f(x)的最大值是$\sqrt{2}$,最小值是-$\frac{\sqrt{2}}{2}$.
故答案为:A.

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图.在正方体ABCD-A1B1C1D1中,P为棱BB1的中点,判断平面D1PC与平面ABCD是否相交.如果相交,作出这两个平面的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两点A(1,1,2)、B(2,1,1)的距离等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.y=sinx,x∈[-π,2π]的图象与直线y=-$\frac{1}{2}$的交点的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC的内角A,B,C所对的边分别为a,b,c,$\overrightarrow a$=($\sqrt{3}$,1),$\overrightarrow b$=(sinA,cosA),$\overrightarrow a$与$\overrightarrow b$的夹角为60°.
(Ⅰ)求角A的大小;
(Ⅱ)若sin(B-C)=2cosBsinC,求$\frac{b}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=$\frac{1}{3}$x3+3xf′(2),则f′(1)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a8+a9=32,a7=1,则a10的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,首项为a1(a1≠0),公差为d,前n项和为Sn,且满足a1S5+15=0,则实数d的取值范围是(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a1,a2,b1,b2都是非零实数,则“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”是“不等式a1x+b1>0与a2x+b2>0的解集相同”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案