精英家教网 > 高中数学 > 题目详情
7.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=$\frac{π}{3}$,O为△ABC的内心,则$\overrightarrow{OA}$$•\overrightarrow{AB}$的值为$\sqrt{3}-3$.

分析 可设切点分别为D,E,F,并连接OD,OE,OF,并画出图形,根据条件由余弦定理可求得BC=$\sqrt{3}$,根据三角形的面积公式可得到$\frac{1}{2}•2•1•\frac{\sqrt{3}}{2}=\frac{1}{2}(2+1+\sqrt{3})r$,r为内切圆半径,从而可求r,进而求出OA,从而由向量数量积的计算公式即可求出$\overrightarrow{OA}•\overrightarrow{AB}$的值.

解答 解:如图,设切点分别为D,E,F,连接OD,OE,OF;

在△ABC中,由余弦定理得,$B{C}^{2}=4+1-2×2×1×\frac{1}{2}=3$;
∴$BC=\sqrt{3}$,设内切圆半径为r,则:${S}_{△ABC}=\frac{1}{2}•2•1•\frac{\sqrt{3}}{2}=\frac{1}{2}(2+1+\sqrt{3})r$;
∴$r=\frac{\sqrt{3}-1}{2}$;
又$∠DAO=\frac{π}{6}$;
∴在Rt△ADO中,AO=$\sqrt{3}-1$;
∴$\overrightarrow{OA}•\overrightarrow{AB}=|\overrightarrow{OA}||\overrightarrow{AB}|cos\frac{5π}{6}$=$(\sqrt{3}-1)×2×(-\frac{\sqrt{3}}{2})=\sqrt{3}-3$.
故答案为:$\sqrt{3}-3$.

点评 考查三角形内心的定义,余弦定理,三角形的面积公式,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a8+a9=32,a7=1,则a10的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等比数列{an}的前n和为Sn,已知S3=a2+10a1,a5=9,则a1=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a1,a2,b1,b2都是非零实数,则“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$”是“不等式a1x+b1>0与a2x+b2>0的解集相同”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A{x||2x-3|≤7},B={x|x<a},若A∪B=B,则实数a的取值范围为(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2}{x}$+alnx-2(a>0)
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的
单调区间;
(2)若对?x∈(0,+∞),都有f′(x)≤($\frac{x+1}{x}$)2恒成立,试求实数a的取值范围;
(3)记g(x)=f(x)+x-b,当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx+12在点x=2处取得极值-4.
(1)求a,b的值
(2)求f(x)在区间[-3,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=ex-x(e为自然对数的底数)在区间[0,1]上的最大值是(  )
A.1+$\frac{1}{e}$B.1C.e+1D.e-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对一批底部周长属于[80,130](单位:cm)的树木进行研究,从中随机抽出200株树木并测出其底部周长,得到频率分布直方图如图所示,由此估计,这批树木的底部周长的众数是105cm,中位数是$\frac{310}{3}$cm,平均数是103.5cm.

查看答案和解析>>

同步练习册答案