精英家教网 > 高中数学 > 题目详情
12.已知复数z=$\frac{1-i}{1+3i}$,则复数z的虚部是(  )
A.$\frac{2}{5}$B.$\frac{2}{5}$iC.-$\frac{2}{5}$D.-$\frac{2}{5}$i

分析 利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=$\frac{1-i}{1+3i}$=$\frac{(1-i)(1-3i)}{(1+3i)(1-3i)}=\frac{-2-4i}{10}=-\frac{1}{5}-\frac{2}{5}i$,
∴复数z的虚部是-$\frac{2}{5}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设数列{an}的前n项和为Sn,关于数列{an},下列命题正确的序号是①②.
①若数列{an}既是等差数列又是等比数列,则an=an+1
②若${S_n}=a{n^2}+bn({a,b∈R})$,则数列{an}是等差数列;
③若${S_n}=1+{({-1})^n}$,则数列{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},则M∩N=(  )
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用0,1,…,199给200个零件编号,并用系统抽样的方法从中抽取10件作为样本进行质量检测,若第一段中编号为5的零件被取出,则第二段被取出的零件编号是(  )
A.25B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当n≥2,n∈N时,不等式an+1+an+2+…+a2n$>\frac{12}{35}$(log3m-log2m+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线l:y=kx+b,曲线C:x2+(y-1)2=1,则“b=1”是“直线l与曲线C有公共点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在复平面内复数z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i对应的四点是否在同一个圆上,并证明你的结论;
(2)实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.从3,5,7,11这四个质数中任取两个相乘,可以得到多少个不相等的积?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于5.

查看答案和解析>>

同步练习册答案