精英家教网 > 高中数学 > 题目详情
14.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有(  )
A.24种B.12种C.10种D.9种

分析 将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果

解答 解:第一步,为甲地选一女老师,有C21=2种选法;
第二步,为甲地选两个男教师,有C42=6种选法;
第三步,剩下的三名教师到乙地,
故不同的安排方案共有2×6×1=12种,
故选B.

点评 本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(x2-y2)(x+y)7的展开式中x2y7的系数为-20.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图几何体中,长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE∥BC,BD⊥AD,M为AB的中点..
(Ⅰ)证明:EM∥平面ACDF;
(Ⅱ)证明:BD⊥平面ACDF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(x-2y)6的展开式中,x4y2的系数为(  )
A.15B.-15C.60D.-60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\sqrt{2-{2}^{x}}$+$\frac{1}{lo{g}_{3}x}$的定义域为(  )
A.{x|x<1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校为了解一个英语教改实验班的情况,举行了一次测试,将该班30位学生的英语成绩进行统计,得图示频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求出该班学生英语成绩的众数和平均数;
(2)从成绩低于80分得学生中随机抽取2人,规定抽到的学生成绩在[50,60)的记1绩点分,在[60,80)的记2绩点分,设抽取2人的总绩点分为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sinx(sinx+$\sqrt{3}$cosx)的最大值为 (  )
A.2B.1+$\sqrt{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}前n项和Sn,${a_n}=1-2{S_n}_{\;}({n∈{N^*}})$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={log_{\frac{1}{3}}}{a_{2n-1}},{c_n}=\frac{{4{n^2}}}{{{b_n}{b_{n+1}}}},{T_n}$为数列{cn}的前n项和,求不超过T2016的最大的整数k.

查看答案和解析>>

同步练习册答案