精英家教网 > 高中数学 > 题目详情
2.如图几何体中,长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE∥BC,BD⊥AD,M为AB的中点..
(Ⅰ)证明:EM∥平面ACDF;
(Ⅱ)证明:BD⊥平面ACDF.

分析 (Ⅰ)取BC中点N,连结EN、MN,推导出平面EMN∥平面ACDF,由此能证明EM∥平面ACDF.
(2)由已知AC⊥平面BCDE,从而AC⊥BD,再由BD⊥AD,AC∩AD=A,能证明BD⊥平面ACDF.

解答 证明:(Ⅰ)取BC中点N,连结EN、MN,
∵长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE∥BC,BD⊥AD,M为AB的中点,
∴EN∥CD,MN∥AC,
∵EN∩MN=N,CD∩AC=C,
EN,MN?平面EMN,CD,AC?平面ACDF,
∴平面EMN∥平面ACDF,
∵EM?平面EMN,∴EM∥平面ACDF.
(2)∵长方形ACDF中,AC⊥CD,长方形ACDF所在平面与梯形BCDE所在平面垂直,
∴AC⊥平面BCDE,
∵BD?平面BCDE,∴AC⊥BD,
∵BD⊥AD,AC∩AD=A,
∴BD⊥平面ACDF.

点评 本题考查线面平行、线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则下列关系式正确的是(  )
A.BD=2CDB.BD=CDC.BD=3CDD.CD=2BD

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\frac{1}{x}+{log_{\frac{1}{2}}}x$的零点位于区间(  )
A.$({\frac{1}{4},\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}是正项等比数列,满足an+2=2an+1+3an,且首项为方程x2+2x-3=0的一个根.则下列等式成立的是(  )
A.an+1=2Sn+1B.an=2Sn+1C.an+1=Sn+1D.an=2Sn-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A={1,2,4,8,16},B={y|y=log2x,x∈A},则A∩B=(  )
A.{1,2}B.{2,4,8}C.{1,2,4}D.{1,2,4,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{x^4}+1,x>0\\ cos2x,x≤0\end{array}\right.$,则下列结论正确的是(  )
A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有(  )
A.24种B.12种C.10种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:x=5,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,A是椭圆C上任意一点,|AF|的最小值为$\sqrt{5}$-1,且点A到直线l的距离最小值为5-$\sqrt{5}$.
(1)求椭圆C的标准方程;
(2)若动直线l1:y=kx+m与椭圆C有且只有一个交点P,且与直线l交于点Q,问:以线段PQ为直径的圆是否经过x轴上的定点,若存在,求出点M坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y+3≥0}\\{kx-y+3≥0}\end{array}\right.$,且z=2x+y的最大值为4,则k的值为-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案