精英家教网 > 高中数学 > 题目详情
12.在△ABC中,若$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则下列关系式正确的是(  )
A.BD=2CDB.BD=CDC.BD=3CDD.CD=2BD

分析 根据向量的加法的意义得到D是BC的中点,从而得到答案.

解答 解:在△ABC中,若$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
则D是BC的中点,
故选:B.

点评 本题考查了向量的加法运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知A(0,0),B(2$\sqrt{3}$,0),C(0,2$\sqrt{6}$),完成下列问题
(1)用向量方法证明:AB⊥AC;
(2)用向量方法求sin∠ABC;
(3)过A作BC的垂线交BC于点D,求点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f是一个从实数集R映射到自身的函数,并且对任何x∈R均有|f(x)|≤1,以及f(x+$\frac{13}{42}$)+f(x)=f(x+$\frac{1}{6}$)+f(x+$\frac{1}{7}$).
证明:函数f(x)是周期函数(即存在一个非零实数c,使得对任何x∈R,f(x+c)=f(x)成立).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,三内角A、B、C成等差数列,问y=cos2A+cos2C是否存在最大值或最小值?如果存在,请求出最值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(x-t)|x|(t∈R).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当t>0时,若f(x)在区间[-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某厂用甲、乙两种原料生产A、B两种产品,已知生产1吨A产品,1吨B产品分别需要的甲、乙原料数,每种产品可获得的利润数及该厂现有原料数如表所示.
产品
所需原料
原料
A产品
(1吨)
B产品
(1吨)
现有原料
(吨)
甲原料(吨)45200
乙原料(吨)310300
利润(万元)712
问:在现有原料下,A、B产品应各生产多少吨才能使利润总额最大?利润总额最大是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x2-y2)(x+y)7的展开式中x2y7的系数为-20.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{3x-a}{{x}^{2}+bx-1}$是定义在(-1,1)上的奇函数,则f($\frac{1}{2}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图几何体中,长方形ACDF所在平面与梯形BCDE所在平面垂直,且BC=2DE,DE∥BC,BD⊥AD,M为AB的中点..
(Ⅰ)证明:EM∥平面ACDF;
(Ⅱ)证明:BD⊥平面ACDF.

查看答案和解析>>

同步练习册答案