精英家教网 > 高中数学 > 题目详情
3.函数f(x)=sinx(sinx+$\sqrt{3}$cosx)的最大值为 (  )
A.2B.1+$\sqrt{3}$C.$\frac{3}{2}$D.1

分析 利用三角函数的倍角公式以及三角函数的辅助角公式进行化简,结合三角函数的有界性进行求解即可.

解答 解:f(x)=sinx(sinx+$\sqrt{3}$cosx)=sin2x+$\sqrt{3}$sinxcosx=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
∴当sin(2x-$\frac{π}{6}$)=1时,函数取得最大值1+$\frac{1}{2}$=$\frac{3}{2}$,
故选:C.

点评 本题主要考查三角函数最值的求解,利用三角函数的倍角公式以及三角函数的辅助角公式进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\frac{1}{x}+{log_{\frac{1}{2}}}x$的零点位于区间(  )
A.$({\frac{1}{4},\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有(  )
A.24种B.12种C.10种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:x=5,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,A是椭圆C上任意一点,|AF|的最小值为$\sqrt{5}$-1,且点A到直线l的距离最小值为5-$\sqrt{5}$.
(1)求椭圆C的标准方程;
(2)若动直线l1:y=kx+m与椭圆C有且只有一个交点P,且与直线l交于点Q,问:以线段PQ为直径的圆是否经过x轴上的定点,若存在,求出点M坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|0≤x≤2},B={x|1<x<3},则A∩B=(  )
A.(1,2]B.[0,3)C.[1,2)D.[0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知Sn为数列{an}的前n项和,且a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,则S10=(  )
A.4B.$\frac{9}{2}$C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=(x+a)ex在x=0处的切线与直线x+y+1=0垂直,则a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y+3≥0}\\{kx-y+3≥0}\end{array}\right.$,且z=2x+y的最大值为4,则k的值为-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题正确的是(2)(5)
(1)若$\overrightarrow{a}$≠$\overrightarrow{o}$,$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$;
(2)对任一向量$\overrightarrow{a}$,有$\overrightarrow{{a}^{2}}$=|$\overrightarrow{a}$|2
(3)若$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{0}$,则,$\overrightarrow{a}$与$\overrightarrow{b}$中至少有一个为$\overrightarrow{0}$;
(4)|$\overrightarrow{a}•\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|;
(5)$\overrightarrow{a}$与$\overrightarrow{b}$是两个单位向量,则$\overrightarrow{{a}^{2}}$=$\overrightarrow{{b}^{2}}$;
(6)若|$\overrightarrow{a}+\overrightarrow{b}$=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(7)($\overrightarrow{a}•\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}•\overrightarrow{c}$)对任意向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都成立.

查看答案和解析>>

同步练习册答案