精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,E,F分别为AB,PC的中点,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥平面DEF;
(2)求点A到平面PBD的距离.
考点:点、线、面间的距离计算,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)证明:PC⊥DF,DE⊥PC,利用线面垂直的判定定理证明PC⊥平面DEF;
(2)证明AD⊥平面PBD,即可求点A到平面PBD的距离.
解答: (1)证明:∵PD=DC,F为PC的中点,
∴PC⊥DF,
∵四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,∠BCD=90°
∴DE⊥平面PDC,
∴DE⊥PC,
∵DE∩DF=D,
∴PC⊥平面DEF;
(2)解:∵DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
∴AD⊥DB,
∵PD⊥AD,PD∩DB=D,
∴AD⊥平面PBD
∴AD=
2
为点A到平面PBD的距离.
点评:本题考查线面垂直的判定,考查点到平面的距离,正确证明线面垂直是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(Ⅰ)求棱AA1的长;
(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

n3+5n(n∈N*)能被哪些自然数整除?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-a•x,a≥e,e=2.71828…为自然对数的底数.
(Ⅰ)当a=e时,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设n∈N*,比较
n(n+1)
2
lna与ln(a-1)+ln(2a-1)+ln(3a-1)+…+ln(na-1)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知凼数f(x)=sin2x+2sinxcosx-cos2x,x∈R,
(1)求凼数f(x)的最小正周期
(2)求凼数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
1
x
-
x
+3=0的解有
 
个(填数字)

查看答案和解析>>

科目:高中数学 来源: 题型:

某普通高中高三年级共有360人,分三组进行体质测试,在三个组中男、女生人数如下表所示.已知在全体学生中随机抽取1名,抽到第二、三组中女生的概率分别是0.15、0.1.
第一组第二组第三组
女生86xy
男生9466z
(1)求x,y,z的值;
(2)为了调查学生的课外活动时间,现从三个组中按1:60的比例抽取学生进行问卷调查,三个组被选取的人数分别是多少?
(3)若从(2)中选取的学生中随机选出两名学生进行访谈,求参加访谈的两名学生“来自两个组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知e为自然对数的底数,则曲线y=xex在点(1,e)处的切线斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,设P是曲线C:xy=1(x>0)上任意一点,l是曲线C在点P处的切线,且l交坐标轴于A,B两点,则下列结论正确的是(  )
A、△OAB的面积为定值2
B、△OAB的面积有最小值为3
C、△OAB的面积有最大值为4
D、△OAB的面积的取值范围是[3,4]

查看答案和解析>>

同步练习册答案