精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinx•cos(x-
π
6
)
+cos2x-
1
2

(1)求函数f(x)的单调递增区间和对称中心.
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=
1
2
,b+c=3,求a的最小值.
考点:三角函数中的恒等变换应用,余弦定理
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(1)首先通过三角函数的恒等变换把函数关系式变形成正弦型函数,进一步利用整体思想求出函数的单调区间和对称中心
(2)利用(1)的结论进一步计算出A的值,在利用余弦定理和基本不等式解出a的最小值.
解答: 解:(1)f(x)=sinx•cos(x-
π
6
)
+cos2x-
1
2

=sinx(
3
2
cosx+
1
2
sinx
)+cos2x-
1
2

=
3
4
sin2x+
1+cos2x
4

=
1
2
sin(2x+
π
6
)+
1
4

令:-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
(k∈Z)
解得:kπ-
π
3
≤x≤kπ+
π
6

即函数的单调递增区间为:[kπ-
π
3
,kπ+
π
6
](k∈Z)
令:2x+
π
6
=kπ

解得:x=
2
-
π
12
(k∈Z)
即函数的对称中心为:(
2
-
π
12
1
4
)
(k∈Z)
(2)利用函数f(x)=
1
2
sin(2x+
π
6
)+
1
4

则:f(A)=
1
2
sin(2A+
π
6
)+
1
4
=
1
2

则:sin(2A+
π
6
)=
1
2

由于:0<A<π
解得:A=
π
3

在△ABC中,角A,B,C的对边分别为a,b,c,b+c=3,
所以利用余弦定理得:
a2=b2+c2-2bccosA
=b2+c2-bc
=(b+c)2-3bc
因为:bc≤(
b+c
2
)2

则:(b+c)2-3bc≥(b+c)2-3(
b+c
2
)2
=
9
4

进一步求得:a2
9
4

则:a≥
3
2
a≤-
3
2
(舍去)
即:amin=
3
2
点评:本题考查的知识要点:三角函数关系式的恒等变换,利用整体思想求正弦型函数的单调区间,及函数的对称中心,及利用余弦定理和基本不等式解三角形知识.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知线性变换T把点(1,-1)变成了点(1,0),把点(1,1)变成了点(0,1)
(Ⅰ)求变换T所对应的矩阵M;
(Ⅱ)求直线y=-1在变换T的作用下所得到像的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城区2010年底居民住房面积为a m2,其中危旧住房占
1
3
,新型住房占
1
4
,为了加快住房建设,计划用10年时间全部拆除危旧住房(每年拆除的数量相同),且从2011年起,居民住房只建新型住房,使新型住房面积每年比上一年增加20%.以2011年为第一年,设第n年底该城区的居民住房总面积为an,写出a1,a2,a3的表达式,并归纳出数列{an}的通项公式(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,E为AD上的点,EF⊥BC,垂足为F,沿EF将矩形ABFE折起,使二面角A-EF-C的大小为60°,连结AD,AC,BC.
(Ⅰ)若M为FC的中点,求证:AC∥平面BEM;
(Ⅱ)求直线CD与平面ABFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加,假设基金平均年利率为r=6.24%,资料显示:2003年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(2003年记为f(1),2004年记为f(2),…,依此类推).
(1)用f(1)表示f(2)和f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2013年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由(参考数据:1.03129≈1.32)

查看答案和解析>>

科目:高中数学 来源: 题型:

微积分的创立与求曲线的切线是密不可分的,历史上有很多关于曲线的研究.如图,设PN是曲线的切线,下面是两位数学家的说法:
①数学家Barrow认为:当弧PP′足够小(PP′→0)时,有
PM
NM
P′R
PR

②数学家Leibniz认为:令PR=dx,P′R=dy,当dx→0时,有PM→
dy
dx
MN.
则(  )
A、Barrow正确,Leibniz错误
B、Leibniz正确,Barrow错误
C、Barrow,Leibniz都正确
D、Barrow,Leibniz都错误

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),且f(1)=1.
(1)求f(0),f(4)的值;
(2)求证:f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断是否存在数列{an}同时满足下列条件:
①{an}是等差数列,且公差不为0;
②数列{
1
an
}也是等差数列.
如果存在,写出它的通项公式;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:当λ变化时,直线(λ+2)x+(1-λ)y-4λ-5=0,都经过一个定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案