精英家教网 > 高中数学 > 题目详情
5.宾馆有客房300间,当每间房租金20元时,正好全部租出去,若租金每提高1元.客房出租数就减少5间,求租金提高多少元时,客房租金总收入最高?

分析 设未知量,列出函数y=(300-5x)(20+x)=-5x2+200x+600,根据二次函数的性质可得出所求x的值,完成作答.

解答 解:设租金提高x元时,租金收入y最高,
由题意可得:y=(300-5x)(20+x)
=-5x2+200x+600,
当x=20时,y有最大值.
答:租金提高20元时,客房租金总收入最高.

点评 考查了利用二次函数模型来解决实际问题.基本应用题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如果一个函数f(x)在定义域D中满足:(1)任意x1,x2∈D,f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$;(2)存在x1,x2∈D,且x1≠x2,使得f(x1)=f(x2),则f(x)可以是(  )
A.f(x)=x2+2xB.f(x)=cosxC.f(x)=2x-1D.f(x)=$\frac{1}{2}$(ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.y=$\frac{1}{tanx}$(x∈[-$\frac{π}{4}$,$\frac{π}{4}$]且x≠0)的值域是[1,+∞)∪(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=sinx+|sinx|,则f(x)为(  )
A.周期函数,最小正周期为πB.周期函数,最小正周期为$\frac{π}{2}$
C.周期函数,最小正周期为2πD.非周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市的出租车价格规定:起步费11元,可行3千米,以后按每千米2.1元计价.可再行7千米,10千米以后全部按每千米3.15元的单价计价,途中等待时间每五分钟按1千米行程计价.
(1)假设途中等待时间为零,写出车费y(元)与行车里程x(千米)之间的关系式;
(2)如果现在有人要乘出租车去某地,路程为15千米,为了合理地少付车费,是否可以考虑半途换车或要求“翻牌”(即重新开始计价,相当于乘客下车后重新上车),请你设计一个较优的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为M.
(1)求M.
(2)若a,b,c∈(0,+∞),a2+2b2+c2=M,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{x,x∈[0,2)}\\{4-x,x∈[2,3)}\\{\frac{5}{2}-\frac{x}{2},x∈[3,5]}\end{array}\right.$,求f(x)在区间[0,5]上的定积分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“吸烟有害健康,吸烟会对身体造成伤害”,哈尔滨市于2012年5月31日规定室内场所禁止吸烟.美国癌症协会研究表明,开始吸烟年龄(X)分别为16岁、18岁、20岁和22岁,其得肺癌的相对危险度(Y)依次为15.10、12.81、9.72、3.21;每天吸烟(U)10支、20支、30支者,其得肺癌的相对危险度(v)分别为7.5、9.5和16.6.用r1表示变量X与y之间的线性相关系数,用r2表示变量U与V之间的线性相关系数,则下列说法正确的是(  )
A.rl=r2B.r1>r2>0C.0<r1<r2D.r1<0<r2

查看答案和解析>>

同步练习册答案