精英家教网 > 高中数学 > 题目详情
15.如果一个函数f(x)在定义域D中满足:(1)任意x1,x2∈D,f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$;(2)存在x1,x2∈D,且x1≠x2,使得f(x1)=f(x2),则f(x)可以是(  )
A.f(x)=x2+2xB.f(x)=cosxC.f(x)=2x-1D.f(x)=$\frac{1}{2}$(ex-e-x

分析 根据条件分别进行验证,依次进行判断即可.

解答 解:A.∵f($\frac{{x}_{1}+{x}_{2}}{2}$)-$\frac{f({x}_{1})+f({x}_{2})}{2}$=($\frac{{x}_{1}+{x}_{2}}{2}$)2+2×($\frac{{x}_{1}+{x}_{2}}{2}$)-$\frac{1}{2}$x12-x1-$\frac{1}{2}$x22-x2=-$\frac{({x}_{1}-{x}_{2})^{2}}{4}$<0恒成立,
即f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$;成立,满足条件.
B.f(x)=cosx的图象不满足条件.比如当x1=0,x2=$\frac{π}{2}$时,f($\frac{{x}_{1}+{x}_{2}}{2}$)=f($\frac{π}{4}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{1}{2}$(0+1)=$\frac{1}{2}$,不满足条件f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$.
C.f(x)=2x-1为单调函数,不满足条件.
D.f(x)=$\frac{1}{2}$(ex-e-x)为单调函数,不满足条件.
故选:A

点评 本题主要考查抽象函数的应用,根据定义转化为进行判断或者使用排除法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则函数的解析式可以是(  )
A.f(x)=2cos(3x+$\frac{2π}{3}$)B.f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$)
C.f(x)=2sin(3x-$\frac{π}{6}$)D.f(x)=2sin(3x-$\frac{π}{6}$)或f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排
多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是(  )
A.296B.221C.225D.641

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数轴上有2个点A、B,最初A在原点,B在坐标2的位置.规定如下,若投掷出来的硬币为正面,则A点坐标加上1,B点坐标不动;反之,若投掷出来的硬币是反面,则B点坐标加上1,A点坐标不动.求下列事件发生的概率
(1)硬币投4次,A的坐标为3的概率;
(2)A比B先到坐标4的概率;
(3)硬币投掷6次,A第一次追上B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线$y=\frac{1}{3}{x^3}+\frac{4}{3}$.
(1)求曲线过点P(2,4)的切线方程;
(2)求满足斜率为1的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在项数为n的等差数列{an}中,前三项之和为12,最后三项之和为132,前n项之和为240,则n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2sin2(ωx+$\frac{π}{6}$)(ω>0)在区间[$\frac{π}{6}$,$\frac{2π}{3}$]内单调递增,则ω的最大值是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设F(a,b)=$\left\{\begin{array}{l}{2a-2b,a≥b}\\{2b-2a,a<b}\end{array}\right.$,有关F(a,b)有以下四个命题:
①?a0,b0∈R,使得F(a0,b0)<0;
②若a,b,c∈R,则F(a,b)+F(b,c)≥F(c,a);
③不等式F(x,2)≤F(1-x,1)的解集是[1,+∞);
④若对任意实数x,m[F(x,-2)+F(x,2)]>2m+6恒成立,则m的取值范围是[1,+∞).
则所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.宾馆有客房300间,当每间房租金20元时,正好全部租出去,若租金每提高1元.客房出租数就减少5间,求租金提高多少元时,客房租金总收入最高?

查看答案和解析>>

同步练习册答案