分析 根据题意,由正弦函数的性质分析可得:y=sinx上存在点(x0,y0),可得y0=sinx0∈[-1,1].函数f(x)=ex+2x-a在[-1,1]上单调递增.利用函数f(x)的单调性可以证明f(y0)=y0.令函数f(x)=ex+2x-a=x,化为a=ex+x.令g(x)=ex+x (x∈[-1,1]).利用导数研究其单调性即可得出.
解答 解:曲线y=sinx上存在点(x0,y0),
∴y0=sinx0∈[-1,1].
函数f(x)=ex+2x-a在[-1,1]上单调递增.
下面证明f(y0)=y0.
假设f(y0)=c>y0,则f(f(y0))=f(c)>f(y0)=c>y0,不满足f(f(y0))=y0.
同理假设f(y0)=c<y0,则不满足f(f(y0))=y0.
综上可得:f(y0)=y0.
令函数f(x)=ex+2x-a=x,化为a=ex+x.
令g(x)=ex+x(x∈[-1,1]).
g′(x)=ex+1>0,∴函数g(x)在x∈[-1,1]单调递增.
∴e-1-1≤g(x)≤e+1.
∴a的取值范围是[-1+e-1,e+1];
故答案为:[-1+e-1,e+1].
点评 本题考查利用导数研究函数的单调性,涉及正弦函数的图象和性质,关键是将原问题转化为f(x)=x在[-1,1]上有解的问题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}+\frac{π}{2}$ | B. | $1+\frac{π}{2}$ | C. | 1+π | D. | 2+π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com