精英家教网 > 高中数学 > 题目详情

【题目】(1)由余弦曲线怎样得到函数的图像?

(2)的图像怎样得到函数的图像?

(3)求函数的单调区间.

(4)判断函数的奇偶性.

【答案】1)见解析(2)见解析(3)在上是增函数,上都是减函数.4)既不是奇函数也不是偶函数.

【解析】

1)根据三角函数的相位变换规则得解;

2)根据三角函数的相位变换规则得解;

3)根据正弦函数的性质解答;

4)根据奇偶性的定义判断;

解:(1)把余弦曲线上所有的点向左平移个单位可得到函数的图像.

(2)的图像上所有的点向右平移个单位得,故将的图像上所有的点向右平移个单位可得到函数的图像.

3)由正弦函数的单调性可得在上是增函数,在上都是减函数.

4)定义域为R,且关于原点对称.

因为,

.

所以函数既不是奇函数也不是偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线的准线与轴交于,抛物线的焦点,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.

(1)求抛物线的方程椭圆的方程;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个函数的图像是一个中心对称图形,关于点对称,那么将的图像向左平移m个单位再向下平移n的单位后得到一个关于原点对称的函数图像.即函数为奇函数.那么下列命题中真命题的个数是(

①二次函数)的图像肯定不是一个中心对称图形;

②三次函数)的图像肯定是一个中心对称图形;

③函数)的图像肯定是一个中心对称图形.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的值域;

2)当时,求的最小值

3)是否存在实数,同时满足下列条件:① ;② 的定义域为时,其值域为.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱的底面是正方形,的交点,

(1)求证:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子产品生产企业生产一种产品,原计划每天可以生产吨产品,每吨产品可以获得净利润万元,其中,由于受市场低迷的影响,该企业的净利润出现较大幅度下滑.为提升利润,该企业决定每天投入20万元作为奖金刺激生产.在此方案影响下预计每天可增产吨产品,但是受原材料数量限制,增产量不会超过原计划每天产量的四分之一.试求在每天投入20万元奖金的情况下,该企业每天至少可获得多少利润(假定每天生产出来的产品都能销售出去)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在D上的函数f(x)满足:对任意x∈D,存在常数M>0,都有-M<f(x)<M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界。

(Ⅰ)判断函数f(x)=-2x+2,x∈[0,2]是否是有界函数,请说明理由;

(Ⅱ)若函数f(x)=1++,x∈[0,+∞)是以3为上界的有界函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案