分析 利用二项展开式的通项公式求出通项,求出前三项系数,列出方程求出n,令x的指数为求常数项和有理项.
解答 解:展开式的通项为Cnk${x}^{\frac{n-k}{2}}$•2k•${x-}^{\frac{k}{3}}$=Cnk•2k•${x}^{\frac{3n-5k}{6}}$,
∴展开式前3项的系数为1,Cn12=2n,4Cn2
∴1+2n+4Cn2=129,
解得n=8,
令$\frac{24-5k}{6}$=0,
即5k=24无整数解,
故无常数项,
当k=0时,$\frac{24-5k}{6}$=4,
C80•20•x4=x4,
当k=6时,$\frac{24-5k}{6}$=-1,
C86•26•x-1=$\frac{1792}{x}$,
故有理项为x4,$\frac{1792}{x}$.
点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (1,+∞) | D. | (1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值-$\frac{1}{3}$ | B. | 最小值-3 | C. | 最大值-$\frac{1}{3}$ | D. | 最大值-3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com