精英家教网 > 高中数学 > 题目详情
若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得曲线的方程是(    )
A.+="1" B.+=1
C.+y2="1"D.+=1
C
圆横坐标不变,纵坐标缩短为原来的后,所得曲线为椭圆,且a=3,b=,焦点在x轴上.∴所得曲线的方程为+y2=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;                                                                                                        
(2)过点(0,1),作轨迹的两条互相垂直的弦,设 的中点分别为,试判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点分别的坐标为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点的坐标分别为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若α∈R,则方程x2+4y2sinα=1所表示的曲线一定不是(    )
A.直线B.圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)抛物线的顶点在原点,焦点在射线x-y+1=0
(1)求抛物线的标准方程
(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足||||+ ·=0,求动点P(x,y)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与双曲线的右支交于不同的两点
(1)求实数的取值范围;
(2)是否存在实数,使得以线段为直径的圆经过双曲线的右焦点?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线没有公共点,则实数的取值范围是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案