精英家教网 > 高中数学 > 题目详情

【题目】如图,PQ是椭圆上的两点(点Q在第一象限),且直线PMQM的斜率互为相反数.若,则直线QM的斜率为__________

【答案】

【解析】

延长,交椭圆于点,由椭圆的对称性和直线PMQM的斜率互为相反数可知:,设出直线的斜率,写出直线的直线方程,将直线方程与椭圆方程联立,消得到一元二次方程,结合,利用一元二次方程根与系数的关系,求出点坐标,并代入椭圆方程中,求出直线的斜率,也就能求出直线QM的斜率.

延长,交椭圆于点,由椭圆的对称性和直线PMQM的斜率互为相反数可知:,如下图所示:

设直线的斜率为,所以直线的方程为:,与椭圆方程联立得:,消元得,

,根据根与系数关系可得:

所以,把代入椭圆方程中得,,解得

所以直线QM的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色农家乐,为了确定未来发展方向此创业者对该景区附近五家农家乐跟踪调查了100天,这五家农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:/)t为入住天数(单位:),以频率作为各自的入住率,收费标准x入住率”y的散点图如图

x

100

150

200

300

450

t

90

65

45

30

20

(1)若从以上五家农家乐中随机抽取两家深人调查,记入住率超过0.6的农家乐的个数,求的概率分布列

(2)zlnx,由散点图判断哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a的结果精确到0.1)

(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L100×入住率×收费标准x)

参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的某种容器的体积为,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为.圆锥的高为,母线与底面所成的角为;圆柱的高为.已知圆柱底面造价为,圆柱侧面造价为,圆锥侧面造价为.

(1)将圆柱的高表示为底面圆半径的函数,并求出定义域;

(2)当容器造价最低时,圆柱的底面圆半径为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论函数的单调性;

(2)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面为等腰梯形, 分别是棱的中点.

(1)证明:直线平面

(2)求证:面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程是.

(1)求它的焦点坐标和准线方程;

(2)直线过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题中:

①若向量是空间的一组基底,则向量也是空间的一组基底;

②已知三点不共线,点为平面外任意一点,若点满足,则点平面

③曲线与曲线)有相同的焦点.

④过定圆上一定点作圆的动弦为坐标原点,若,则动点的轨迹为椭圆;

⑤若过点的直线交椭圆于不同的两点,且的中点,则直线的方程是.

其中真命题的序号是______.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽数之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了明天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

从这5天中任选2天,记发芽的种子数分别为,求事件“君不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5填中的另三天的数据,求出关于的线性回归方程,.

(参考公式:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

同步练习册答案