精英家教网 > 高中数学 > 题目详情
17.已知f(x)=log2(ax+b),f(2)=2,f(3)=3,求a与b的值.

分析 由已知可得:$\left\{\begin{array}{l}{lo{g}_{2}(2a+b)=2}\\{lo{g}_{2}(3a+b)=3}\end{array}\right.$,化为2a+b=22,3a+b=23.联立解出即可.

解答 解:∵f(x)=log2(ax+b),f(2)=2,f(3)=3,
∴$\left\{\begin{array}{l}{lo{g}_{2}(2a+b)=2}\\{lo{g}_{2}(3a+b)=3}\end{array}\right.$,
化为2a+b=22,3a+b=23
解得a=4,b=-4.

点评 本题考查了对数式与指数式的互化及其运算性质,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,a2},实数a不能取的值的集合是(  )
A.{-1,1}B.{-1}C.{-1,0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集为实数集R,集合A=(-∞,1],B=[-5,+∞),求:
(1)A∪B,A∩B;
(2)∁UA,∁UB;
(3)A∩∁UB,B∩∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{bn}中,b1=0,bn+1=3bn+2(n∈N),数列{an}的前n项和为Sn,且Sn-1=bn
(1)求an
(2)求数列{$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$}的前n(n∈N)项的和;
(3)数列{nan}的前n项和Tn,求Tn-(n-$\frac{1}{2}$)•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若lg2=a,lg3=b.
(1)用a,b表示lg$\frac{3}{2}$与log245;
(2)求102a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax(a>0且a≠1)且f(2)=9,则f($\frac{1}{2}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2.
(1)若a与b的夹角为150°,求|$\overline{a}+2\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求$\overrightarrow{a}$与b的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知盒子中有六张分别标有数字1、2、3、4、5、6的卡片
(Ⅰ)现从盒子中任取两张卡片,将卡片上的数字相加,求所得数字是奇数的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张标有数字为偶数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙、丙三人站一排,则甲、乙相邻的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案