精英家教网 > 高中数学 > 题目详情

已知数列前n项和=), 数列为等比数列,首项=2,公比为q(q>0)且满足为等比数列.
(1)求数列的通项公式;
(2)设,记数列的前n项和为Tn,,求Tn。

(1);(2)

解析试题分析:(1)因为数列前n项和=),这类型一般都是通过向前递推一个等式,然后根据.即可转化为关于通项的等式.但是要检验第一项是否成立.数列为等比数列以及题所给的其他条件,即可求出通项公式.
(2)因为,又因为由(1)可得的通项公式,即可求得数列的通项公式.再通过错位相减法求得前n项的和.
试题解析:(1)当n=1时,
当n≥2时,,
验证时也成立.∴数列的通项公式为:
成等差数列,所以,即
因为∴数列的通项公式为:         6分
(2)∵
        ①
      ②
由①-②得:

          12分
考点:1.数列的通项与前n项和的关系式.2.等比数列.3.错位相减法.4.递推的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为满足,且.
(1)试求出的值;
(2)根据的值猜想出关于的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下列三角形数表,假设第n行的第二个数为an(n≥2,n∈N*).

(1)依次写出第六行的所有6个数;
(2)归纳出an+1an的关系式并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中满足.
(1)求和公差
(2)求数列的前10项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项.
(Ⅰ)求
(Ⅱ)判断数列的增减性,并说明理由;
(Ⅲ)设,求数列的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和满足,其中.
⑴若,求;
⑵若,求证:,并给出等号成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于任意的不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列型数列,且试求的递推关系,并证明恒成立。

查看答案和解析>>

同步练习册答案