精英家教网 > 高中数学 > 题目详情
6.设复数z满足$z+2\overline z=3-i$(i为虚数单位),则z=1+i.

分析 设z=x+yi,则$\overline{z}=x-yi$代入$z+2\overline{z}$,再由复数相等的充要条件,即可得到x,y的值,则答案可求.

解答 解:设z=x+yi,∴$\overline{z}=x-yi$.
则$z+2\overline{z}$=x+yi+2(x-yi)=3-i,即3x-yi=3-i,
∴x=1,y=1,因此,z=1+i.
故答案为:1+i.

点评 本题考查了复数代数形式的混合运算,考查了复数相等的充要条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}=1$,则x+2y的最小值为8;则xy的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为4$\sqrt{2}$;直线SB与AC所成角的余弦值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{1+lnx}{x}$在区间(a,a+$\frac{2}{3}$)(a>0)上不单调,则实数a的取值范围是(  )
A.(0,1)B.($\frac{2}{3}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
(1)求四棱锥S-ABCD的体积;
(2)求证:BC⊥面SAB;
(3)求SC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为$\frac{5}{7}$(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知正三棱柱ABC-A1B1C1的底面积为$\frac{{9\sqrt{3}}}{4}$,侧面积为36;
(1)求正三棱柱ABC-A1B1C1的体积;
(2)求异面直线A1C与AB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|$\overrightarrow{AO}$+$\overrightarrow{BO}$|=|$\overrightarrow{AO}$-$\overrightarrow{BO}$|,则$\overrightarrow{AO}$•$\overrightarrow{AB}$=4.

查看答案和解析>>

同步练习册答案