分析 先画出可行域,再把目标函数变形为直线的斜截式,根据其在y轴上的截距即可求之.
解答
解:画出可行域,如图所示解得A($\frac{1}{3}$,$\frac{2}{3}$),C(2,-1)
把设z=|t|,则t=2x-2y-1
t=2x-2y-1变形为y=x-$\frac{1}{2}$t$-\frac{1}{2}$,则直线经过点A时t取得最小值;则直线经过点C时t取得最大,
所以tmin=2×$\frac{1}{3}$-2×$\frac{2}{3}$-1=-$\frac{5}{3}$,tmax=2×2-2×(-1)-1=5
∴z的取值范围为[0,5)
故答案为:[0,5).
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{8}{3}$ | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 求{$\frac{1}{n}$}前10项和 | B. | 求{$\frac{1}{2n}$}前10项和 | C. | 求{$\frac{1}{n}$}前11项和 | D. | 求{$\frac{1}{2n}$}前11项和 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com