精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{lnx}{x}$(0<x<10)(  )
A.在(0,10)上是增函数
B.在(0,10)上是减函数
C.在(0,e)上是增函数,在(e,10)上是减函数
D.在(0,e)上是减函数,在(e,10)上是增函数

分析 先求导,根据导数和函数的单调性的关系即可解决.

解答 解:∵f(x)=$\frac{lnx}{x}$(10>x>0),
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$
令f′(x)=0,即$\frac{1-lnx}{{x}^{2}}$=0,得x=e,
当f′(x)>0,即x<e,此时f(x)为增函数,又x>0,增区间为(0,e),
当f′(x)<0,即10>x>e,此时f(x)为减函数,减区间为(e,10).
故选:C.

点评 本题主要考查利用导数研究函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,内角A,B,C的对边分别为a,b,c,且a,b,c成等差数列,C=2A.
(1)求cosA;
(2)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a,b,c为实数,2a+4b=2c,4a+2b+1=4c,则c的最小值为$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则这个几何体的外接球的体积为$\frac{\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x+$\frac{a}{x}$(a>0),若对任意的m、n、$p∈[\frac{1}{3},1]$,长为f(m)、f(n)、f(p)的三条线段均可以构成三角形,则正实数a的取值范围是($\frac{1}{15}$,$\frac{1}{9}$)∪[1,$\frac{5}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线y=m分别与曲线y=2(x+1),与y=x+lnx交于点A,B,则|AB|的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.沿一个正方体三个面的对角线截得的几何体如图所示,若正视图的视线方向与前面的三角形面垂直,则该几何体的左视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若曲线C1分别与曲线C2、C3相交于点A、B(A、B均异于原点O),求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b,c分别是△ABC三个内角∠A,∠B,∠C的对边,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

查看答案和解析>>

同步练习册答案