精英家教网 > 高中数学 > 题目详情
如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于点E、D.
(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=
1
2
,⊙O的半径为6,求OA的长.
考点:弦切角,圆的切线的判定定理的证明
专题:立体几何
分析:(I)利用等腰三角形的性质和切线的定义即可证明;
(II)利用圆的性质可得
CD
EC
=
1
2
.再利用切线的性质可得△CBD∽△EBC,于是
BD
BC
=
CD
EC
=
1
2
.设BD=x,BC=2x,利用切割线定理可得BC2=BD•BE,代入解出即可.
解答: (Ⅰ)证明:如图,连接OC,
∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.
(Ⅱ)∵ED是直径,∴∠ECD=90°,
在Rt△BCD中,∵tan∠CED=
1
2
,∴
CD
EC
=
1
2

∵AB是⊙O的切线,
∴∠BCD=∠E.
又∵∠CBD=∠EBC,
∴△CBD∽△EBC,∴
BD
BC
=
CD
EC
=
1
2

设BD=x,BC=2x,
又BC2=BD•BE,∴(2x)2=x•(x+12).
解得:x1=0,x2=4,
∵BD=x>0,∴BD=4.
∴OA=OB=BD+OD=4+6=10.
点评:本题考查了等腰三角形的性质、切线的定义、圆的性质、相似三角形的性质、切割线定理等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

能正确表示图中阴影部分的选项为(  )
A、∁U(M∪N)
B、∁U(M∩N)
C、(M∪N)∩∁U(M∩N)
D、(M∩N)∪∁U(M∪N)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1-sinθ,1),
b
=(
1
4
,1+sinθ),若
a
b
,则锐角θ等于(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,2)和B(0,-2),过点A的直线与过点B的直线交于点P,若直线PA、PB的斜率之积为1.
(1)求动点P的轨迹方程C;
(2)设点D为点A关于直线y=x的对称点,过点D的直线l交曲线C于x轴下方两个不同的点E、F,设过定点B与EF的中点M的直线交x轴于点Q(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体PMBCA中,平面PAC⊥平面ABC,△PAC是边长为2的正三角形,PM∥BC,且BC=2PM=4,AB=2
5

(Ⅰ)求证:PA⊥BC;
(Ⅱ)求多面体PMBCA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的两焦点坐标分别为F1(-5
3
,0)和F2(5
3
,0),且椭圆经过点P(-5
3
,-
5
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-6,0)作直线l交椭圆C于M、N两点(直线l不与x轴重合),A为椭圆的左顶点,试证明:∠MAN=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(
1-mx
1-x
)为奇函数.
(1)求m的值,并求f(x)的定义域;
(2)判断函数f(x)的单调性,并证明;
(3)若对于任意θ∈[0,
π
2
],是否存在实数λ,使得不等式f(cos2θ+λsinθ-
1
3
)-lg3>0.若存在,求出实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(cosx-sinx)sin2x
cosx

(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在区间[
π
24
11π
24
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形CDEF中,DC⊥CF,DC∥EF,CD=CF=2EF=2.将它绕CD旋转得到CDBA,使得平面CDBA⊥平面CDEF.
(1)若点M是ED的中点,证明:BM∥平面ACE;
(2)求AE与平面BED所成角的正弦值.

查看答案和解析>>

同步练习册答案