【题目】已知
=(cosx,﹣
),
=(sinx+cosx,1),f(x)=
,
(1)若0<α<
,sinα=
,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.
【答案】
(1)解:由
,
,则α=
,
由
=(cosx,﹣
),
=(sinx+cosx,1),
则f(x)=
=cosxsinx+cos2x﹣
=
sin2x+
cos2x
=
sin(2x+
),
即有f(α)=
sin(2×
+
)=
=
;
(2)解:由(1)可得,f(x)=
sin(2x+
),
则f(x)的最小正周期T=
=π;
由
,
解得
,
则f(x)的单调增区间为
.
【解析】(1)由条件可得α=
,再由向量的数量积的坐标表示和二倍角公式及两角和的正弦公式,化简f(x),再代入计算即可得到所求值;(2)运用正弦函数的周期公式和增区间,解不等式即可得到最小正周期和所求增区间.
科目:高中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为
.
(1)若出现故障的机器台数为
,求
的分布列;
(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考查每行中五个数之和,记这五个和的最小值为
,则
的最大值为( )
A.
B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(2cosωx,cos2ωx),
=(sinωx,1)(其中ω>0),令f(x)=
,且f(x)的最小正周期为π.
(1)求
的值;
(2)写出
上的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与
、
轴交于
、
两点.
(Ⅰ)若点
、
分别是双曲线
的虚轴、实轴的一个端点,试在平面上找两点
、
,使得双曲线
上任意一点到
、
这两点距离差的绝对值是定值.
(Ⅱ)若以原点
为圆心的圆
截直线
所得弦长是
,求圆
的方程以及这条弦的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,直线
(其中
)与曲线
相交于
、
两点.
(Ⅰ)若
,试判断曲线
的形状.
(Ⅱ)若
,以线段
、
为邻边作平行四边形
,其中顶点
在曲线
上,
为坐标原点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com