精英家教网 > 高中数学 > 题目详情
13.从区间[-1,1]内随机取出一个数a,使3a+1>0的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 本题利用几何概型求概率,首先解得的区间长度以及与区间[-1,1]的长度,求比值即得.

解答 解:由3a+1>0,解得:a>-$\frac{1}{3}$,
故满足条件的概率p=$\frac{1+\frac{1}{3}}{1+1}$=$\frac{2}{3}$,
故选:C.

点评 本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.数列{an}的各项均为正数,其前n项和为Sn,已知$\frac{n{a}_{n+1}}{{a}_{n}}$$-\frac{(n+1){a}_{n}}{{a}_{n+1}}$=1,且a1=$\frac{π}{3}$,则tanSn的取值集合是(  )
A.{0,$\sqrt{3}$}B.{0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$}C.{0,$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$}D.{0,$\sqrt{3}$,-$\sqrt{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的体积为(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知空间四边形ABCD,满足|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值(  )
A.-1B.0C.$\frac{21}{2}$D.$\frac{33}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁UB)=(  )
A.(0,2]B.(-1,2]C.[-1,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-$\frac{1}{2}$,则m的值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t为参数,a∈R),曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,则a的取值范围是(  )
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:
(1)lg8000+lg125-10lg4
(2)(log32+log92)•(log43+log83)
(3)$\sqrt{2}$×$\root{4}{2}$×$\root{8}{2}$×…×$\root{{2}^{n}}{2}$…(n∈N*

查看答案和解析>>

同步练习册答案