分析 (1)(2)根据对数的运算性质计算即可,
(3)根据等比数列的前n项和公式和指数幂的运算性质计算即可.
解答 解:(1)原式=lg(8000×125)-4=6-4=2,
(2)原式=($\frac{lg2}{lg3}$+$\frac{lg2}{2lg3}$)($\frac{lg3}{2lg2}$+$\frac{lg3}{3lg2}$)=$\frac{5}{4}$,
(3)∵$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$,
∴原式=2${\;}^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+…+\frac{1}{{2}^{n}}}$=2${\;}^{1-\frac{1}{{2}^{n}}}$.
点评 本题考查了对数的运算性质和等比数列的前n项和公式以及指数幂的运算性质.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1<x2 | B. | x1>x2 | C. | ${x_1}^2<{x_2}^2$ | D. | ${x_1}^2>{x_2}^2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (0,+∞) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{4}$,+∞) | B. | [$\frac{π}{4}$,$\frac{5π}{12}$) | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | [$\frac{π}{4}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com