精英家教网 > 高中数学 > 题目详情
14.如图,一平面与空间四边形ABCD的对角线AC,BD都平行,且交空间四边形的边AB,BC,CD,DA分别于E,F,G,H.
(1)求证:四边形EFGH为平行四边形;
(2)若E是边AB的中点,AC=6,BD=8,异面直线AC与BD所成的角为60°,求线段EG的长度.

分析 (1)连接AC,BD,得到AD,CD,AC确定一个平面,推导出EF∥HG,EH∥GF,由此能证明四边形EFGH为平行四边形.
(2)推导出EF=3,FG=4,∠EFG=60°,由此利用余弦定理能求出线段EG的长度.

解答 证明:(1)连接AC,BD 
∵AD,CD,AC两两相交,∴AD,CD,AC确定一个平面,
又∵平面EFGH与空间四边形ABCD的对角线AC,BD都平行,
且交空间四边形的边AB,BC,CD,DA分别于E,F,G,H,
∴AC∥平面EFGH,GH?平面ADC,AC?平面ADC,
∴AC∥GH,同理,EF∥AC,
∴EF∥HG,同理,EH∥GF,
∴四边形EFGH为平行四边形.
解:(2)∵E是边AB的中点,AC=6,BD=8,异面直线AC与BD所成的角为60°,
由(1)得H、G、F分别是AD、DC、BC的中点,
∴EF∥AC,且EF=$\frac{1}{2}AC$=3,FG∥BD,且FG=$\frac{1}{2}BD$=4,
∴∠EFG=60°,
∴EG=$\sqrt{E{F}^{2}+F{G}^{2}-2×EF×FG×cos60°}$=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$,
∴线段EG的长度为$\sqrt{13}$.

点评 本题考查四边形为平行四边形的证明,考查线段长的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+$\frac{x-2}{x+1}$,其中 a>1:
(1)证明:函数f(x)在(-1,∞)上为增函数;
(2)证明:不存在负实数x0使得f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,AB=8,AC=6,AD垂直BC于点D,E,F分别为AB,AC的中点,若$\overrightarrow{DE}$•$\overrightarrow{DF}$=6,则BC=(  )
A.2$\sqrt{13}$B.10C.2$\sqrt{37}$D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在复平面内,表示复数z的点为z,则表示复数$\frac{z}{1-i}$的点为(  )
A.EB.FC.GD.H

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出值x∈(16,25),则输入x的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一个算法,其流程图如下,则输岀的结果是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输出的n的值为5,则输入的T的最大值为(  )
A.108B.76C.61D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N).记Sn=a1+a2+…+an.Tn=$\frac{1}{{1+{a_1}}}$+$\frac{1}{{(1+{a_1})(1+{a_2})}}$+…+$\frac{1}{{(1+{a_1})(1+{a_2})…(1+{a_n})}}$.求证:当n∈N*
(Ⅰ)0≤an<an+1<1;
(Ⅱ)Sn>n-2;
(Ⅲ)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F1,F2分别是双曲线3x2-5y2=75的左焦点和右焦点,P是双曲线上的一点,且∠F1PF2=60°,求三角形F1PF2的面积.

查看答案和解析>>

同步练习册答案