ijͬѧÓá¶¼¸ºÎ»­°å¡·Ñо¿Å×ÎïÏßµÄÐÔÖÊ£º´ò¿ª¡¶¼¸ºÎ»­°å¡·Èí¼þ£¬»æÖÆÄ³Å×ÎïÏßE£ºy2=2px£¬ÔÚÅ×ÎïÏßÉÏÈÎÒâ»­Ò»¸öµãS£¬¶ÈÁ¿µãSµÄ×ø±ê£¨xS£¬yS£©£¬Èçͼ£®
£¨¢ñ£©Í϶¯µãS£¬·¢ÏÖµ±xS=4ʱ£¬yS=4£¬ÊÔÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÅ×ÎïÏßEµÄ¶¥µãΪA£¬½¹µãΪF£¬¹¹ÔìÖ±ÏßSF½»Å×ÎïÏßEÓÚ²»Í¬Á½µãS¡¢T£¬¹¹ÔìÖ±ÏßAS¡¢AT·Ö±ð½»×¼ÏßÓÚM¡¢NÁ½µã£¬¹¹ÔìÖ±ÏßMT¡¢NS£®¾­¹Û²ìµÃ£ºÑØ×ÅÅ×ÎïÏßE£¬ÎÞÂÛÔõÑùÍ϶¯µãS£¬ºãÓÐMT¡ÎNS£®ÇëÄãÖ¤Ã÷ÕâÒ»½áÂÛ£®
£¨¢ó£©Îª½øÒ»²½Ñо¿¸ÃÅ×ÎïÏßEµÄÐÔÖÊ£¬Ä³Í¬Ñ§½øÐÐÁËÏÂÃæµÄ³¢ÊÔ£ºÔÚ£¨¢ò£©ÖУ¬°Ñ¡°½¹µãF¡±¸Ä±äΪÆäËü¡°¶¨µãG£¨g£¬0£©£¨g¡Ù0£©¡±£¬ÆäÓàÌõ¼þ²»±ä£¬·¢ÏÖ¡°MTÓëNS²»ÔÙÆ½ÐС±£®ÊÇ·ñ¿ÉÒÔÊʵ±¸ü¸Ä£¨¢ò£©ÖÐµÄÆäËüÌõ¼þ£¬Ê¹µÃÈÔÓС°MT¡ÎNS¡±³ÉÁ¢£¿Èç¹û¿ÉÒÔ£¬Çëд³öÏàÓ¦µÄÕýÈ·ÃüÌ⣻·ñÔò£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp£¬¼´¿ÉÇó³öÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºmy=x-1£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öM£¬NµÄ×ø±ê£¬¿ÉµÃ
MT
¡¢
NS
µÄ×ø±ê£¬Ö¤Ã÷
MT
¡Î
NS
£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®
½â´ð£º ½â£º£¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp=2£¬¡­£¨3·Ö£©
Òò´Ë£¬Å×ÎïÏßEµÄ·½³Ìy2=4x£®¡­£¨4·Ö£©
£¨¢ò£©ÒòΪÅ×ÎïÏßEµÄ½¹µãΪF£¨1£¬0£©£¬ÉèS£¨x1£¬y1£©£¬T£¨x2£¬y2£©£¬
ÒÀÌâÒâ¿ÉÉèÖ±Ïßl£ºmy=x-1£¬
´úÈëÅ×ÎïÏß·½³ÌµÃy2-4my-4=0£¬
Ôòy1+y2=4m£¬y1y2=-4 ¢Ù¡­£¨6·Ö£©
ÓÖÒòΪlAS£ºy=
y1
x1
•x
£¬lAT£ºy=
y2
x2
•x
£¬
ËùÒÔM£¨-1£¬-
y1
x1
£©£¬N£¨-1£¬-
y2
x2
£©£¬
ËùÒÔ
MT
=£¨x2+1£¬y2+
y1
x1
£©£¬
NS
=£¨x1+1£¬y1+
y2
x2
£©£¬¡­£¨7·Ö£©
ÓÖÒòΪ£¨y2+
y1
x1
£©£¨x1+1£©-£¨y1+
y2
x2
£©£¨x2+1£©£¬¡­£¨8·Ö£©
=£¨y1-y2£©£¨
y12y22-16
4y1y2
£©£¬¢Ú
°Ñ¢Ù´úÈë¢Ú£¬µÃ£¨y1-y2£©£¨
y12y22-16
4y1y2
£©=0£¬¡­£¨10·Ö£©
¼´£¨y2+
y1
x1
£©£¨x1+1£©-£¨y1+
y2
x2
£©£¨x2+1£©=0£¬
ËùÒÔ
MT
¡Î
NS
£¬
ÓÖÒòΪM¡¢T¡¢N¡¢SËĵ㲻¹²Ïߣ¬ËùÒÔMT¡ÎNS£®¡­£¨11·Ö£©
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵıê×¼·½³Ì¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢·ÖÀàÓëÕûºÏ˼Ïë¡¢ÊýÐνáºÏ˼ÏëµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûx£¾y£¾0£¬Ôò
xyyx
xxyy
=£¨¡¡¡¡£©
A¡¢(x-y)
y
x
B¡¢(x-y)
x
y
C¡¢(
x
y
)y-x
D¡¢(
x
y
)x-y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µÈ±ß¡÷ABCÖУ¬AB=3£¬OΪÖÐÐÄ£¬¹ýOµÄÖ±Ïß½»ABÓÚM£¬½»ACÓÚN£¬Éè¡ÏAOM=¦È£¨0¡Ü¦È¡Ü120¡ã£©£¬µ±¦È·Ö±ðΪºÎֵʱ£¬
1
OM
+
1
ON
È¡µÃ×î´óºÍ×îСֵ£¬²¢Çó³öÆä×î´óºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒf£¨x£©µÄͼÏó¹ØÓÚx=1¶Ô³Æ£¬µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=2x-1
£¨1£©ÇóÖ¤£ºf£¨x£©ÊÇÖÜÆÚº¯Êý£»
£¨2£©µ±x¡Ê[1£¬2]ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨3£©¼ÆËãf£¨0£©+f£¨1£©+f£¨2£©+¡­+f£¨2013£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=lnx£¬g£¨x£©=ax+1£¬a¡ÊR£¬¼ÇF£¨x£©=f£¨x£©-g£¨x£©£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©ÔÚx=e´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯ÊýF£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©µ±a£¾0ʱ£¬Èôº¯ÊýF£¨x£©Ã»ÓÐÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬¹ýµãA£¨-a£¬0£©£¬B£¨0£¬b£©µÄÖ±ÏßµÄÇãб½ÇΪ
¦Ð
6
£¬Ô­µãµ½¸ÃÖ±ÏߵľàÀëΪ
2
2
£¬
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýk£¬Ö±Ïßy=kx+2½»ÍÖÔ²ÓÚQ£¬PÁ½µã£¬ÒÔPQΪֱ¾¶µÄÔ²¹ýµãD£¨-1£¬0£©£¬Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì£º4x-3¡Á2x-4=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA={x|-5£¼x£¼2}£¬B={x|x+y=1£¬y¡ÊA}£¬ÇóA¡ÉB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=4+t
£¨tΪ²ÎÊý£©£®ÒÔOΪ¼«µã£¬ÉäÏßOxΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ·½³ÌΪ¦Ñ=4sin¦È£¬ÇúÏßC1ÓëC2½»ÓÚM£¬NÁ½µã£¬ÔòÏß¶ÎMNµÄ³¤¶ÈΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸