精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
考点:函数单调性的性质,函数奇偶性的性质,函数的周期性
专题:函数的性质及应用
分析:(1)根据函数的对称性和函数的奇偶性即可得到f(x)是周期函数;
(2)根据函数的对称性,即可求出当x∈[1,2]时的f(x)的解析式;
(3)根据函数的周期性先计算f(0)+f(1)+f(2)+f(3)=0,然后可得f(0)+f(1)+f(2)+…+f(2013)的值.
解答: 解:(1)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),
∵f(x)是R上的奇函数,
∴f(1+x)=f(1-x)=-f(x-1),
即f(2+x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即f(x)是周期为4的周期函数;
(2)∵f(x)的图象关于x=1对称,
∴f(1+x)=f(1-x),即f(x)=f(2-x)
当x∈[1,2]时,2-x∈[0,1],
∵当x∈[0,1]时,f(x)=2x-1
∴f(x)=f(2-x)=22-x-1,x∈[1,2].
(3)∵当x∈[0,1]时,f(x)=2x-1
∴f(0)=0,f(1)=2-1=1,f(2)=f(0)=0,f(3)=f(-1)=-f(1)=-1,f(4)=f(0)=0,
∴f(0)+f(1)+f(2)+f(3)=0,
即f(0)+f(1)+f(2)+…+f(2013)=503×0+f(2012)+f(2013)=f(0)+f(1)=1.
点评:本题主要考查函数奇偶性,对称性和周期性的性质的判断和应用,综合考查函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某程序框图如图所示,若该程序运行后输出的结果不大于37,则输入的整数i的最大值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x2+1
是R上的奇函数
(1)求a的值;
(2)用定义证明该函数在[1,+∞)上的单调性,并求当x∈[2,5]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=5,AC=3,BC=4,线段MN分别交BC,AB于点M,N,若线段MN分△ABC为面积相等的两部分,求线段MN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β∈(0,
π
2
),sinα-sinβ=-
1
2
  , cosα-cosβ=
1
2
,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线从点P(6,4)射出,经过点Q(2,1),又经x轴反射,求入射光线和反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线E:y2=2px,在抛物线上任意画一个点S,度量点S的坐标(xS,yS),如图.
(Ⅰ)拖动点S,发现当xS=4时,yS=4,试求抛物线E的方程;
(Ⅱ)设抛物线E的顶点为A,焦点为F,构造直线SF交抛物线E于不同两点S、T,构造直线AS、AT分别交准线于M、N两点,构造直线MT、NS.经观察得:沿着抛物线E,无论怎样拖动点S,恒有MT∥NS.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线E的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F”改变为其它“定点G(g,0)(g≠0)”,其余条件不变,发现“MT与NS不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT∥NS”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线ax+2y-1=0的方向向量是直线(a+1)x+ay+2=0的法向量,则a=
 

查看答案和解析>>

同步练习册答案