精英家教网 > 高中数学 > 题目详情
19.在△ABC中,若sin B•sin C=cos2$\frac{A}{2}$,且sin2B+sin2C=sin2A,则△ABC是(  )
A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形

分析 根据降次公式和三角形内角和消去A,结合正弦定理求解即可.

解答 解:由sin B•sin C=cos2$\frac{A}{2}$,
可得:sin B•sin C=$\frac{1}{2}$$+\frac{1}{2}$cosA
?sin B•sin C=$\frac{1}{2}$-$\frac{1}{2}$cos(B+C)
?sin B•sin C=$\frac{1}{2}$$+\frac{1}{2}$sin B•sin C-$\frac{1}{2}$cos B•cos C
?$\frac{1}{2}$cos B•cos C+$\frac{1}{2}$sin B•sin C=$\frac{1}{2}$
?cos(B-C)=1,
∴B=C,
由sin2B+sin2C=sin2A,
根据正余弦定理:可得b2+c2=a2
综上可得:△ABC是等腰直角三角形.
故选:D.

点评 本题主要考查了降次公式和三角形内角和,正弦定理的灵活运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.数列{an}的前n项和${S_n}=A{n^2}+Bn+q(A≠0)$,则q=0是{an}为等差数列的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,${a_2}=4{,^{\;}}{a_5}=32$.
(1)求数列{an}的通项公式;
(2)若${a_3}{,^{\;}}{a_5}$分别为等差数列{bn}的第4项和第16项,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线2x-4y+7=0的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A、B、C是我方三个炮兵阵地,A在B正东6km,C在B正北偏西30°,相距4km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4s后,B、C才同时发现这一信号,此信号的传播速度为1km/s,A若炮击P地,则炮击的方位角是北(南、北)偏东(东、西)30度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点.若$\overrightarrow{AC}•\overrightarrow{BE}$=3,则AB的长为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中,点P(3,2,5)关于yOz平面对称的点的坐标为(  )
A.(-3,2,5)B.(-3,-2,5)C.(3,-2,-5)D.(-3,2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2-4x+3=0,
(1)求过M(3,2)点的圆的切线方程;
(2)直线l过点$N({\frac{3}{2},\frac{1}{2}})$且被圆C截得的弦长最短时,求直线l的方程;
(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线$y=k(x-\frac{5}{2})$与曲线C1只有一个交点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,那么双曲线的渐近线方程为(  )
A.$\sqrt{2}x±y=0$B.x±y=0C.2x±y=0D.$\sqrt{3}x±y=0$

查看答案和解析>>

同步练习册答案