精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,AB=3,BC=4,点E、F分别在AB、BC边上,将△BEF沿EF折叠,点B落在B′处,当B′在矩形ABCD内部时,AB′的最小值为
 
考点:解三角形的实际应用
专题:空间位置关系与距离
分析:根据翻折变换的性质,翻折前后图形图形大小不发生变化,以及当点B距点A的最小距离时,即AB′⊥EB′,A,B′,C在一条直线上,利用勾股定理,即可求出答案.
解答: 解:∵矩形ABCD纸片中,AD=4,CD=3,限定点E在边AB上,点F在边BC上,将△BEF沿EF翻折后叠合在一起,
∴当点B′距点A的最小距离时,∠B′EB要最大,则∠ECB′最小,而点F在边BC上,此时F点与点C重合,且B′在AC上时,
∵BC=B′C=4,∠EB′C=90°,
∴AC=
AB2+BC2
=5,
∴AB′=AC-B′C=5-4=1,
故答案为:1
点评:此题主要考查了翻折变换,找出当点B距点A的最小距离时,B′点的位置是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率,并补全这个频率分布直方图(直接画在图形上);
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵
x
2
3
1
的一个特征值为4,求另一个特征值及其对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论直线l:y=kx+1与双曲线C:x2-y2=1的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一段长为11m的木棍,要折成两端,每段不小于3m的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},则下列函数(a,b,k都是常数):
①y=kx+b(k≠0,b≠0);②y=ax(a>1);③y=
k
x
(k≠0);④y=sinx.
其中属于集合M的函数是
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

工人师傅在如图1的一块矩形铁皮的中间画了一条曲线,并沿曲线剪开,将所得的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.对工人师傅所画的曲线,有如下说法:

(1)是一段抛物线;
(2)是一段双曲线;
(3)是一段正弦曲线;
(4)是一段余弦曲线;
(5)是一段圆弧.
则正确的说法序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=1的右焦点且与右支有两个交点的直线,其倾斜角范围是
 

查看答案和解析>>

同步练习册答案