精英家教网 > 高中数学 > 题目详情

【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.

【答案】
(1)解:在△ABC中,∵cosBcosC﹣sinBsinC=

∴cos(B+C)=

又∵0<B+C<π,

∴B+C=

∵A+B+C=π,

∴A=


(2)解:由余弦定理a2=b2+c2﹣2bccosA,

得(2 2=(b+c)2﹣2bc﹣2bccos

把b+c=4代入得:12=16﹣2bc+bc,

整理得:bc=4,

则△ABC的面积S= bcsinA= ×4× =


【解析】(1)已知等式左边利用两角和与差的余弦函数公式化简,求出cos(B+C)的值,确定出B+C的度数,即可求出A的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a与b+c的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=2x 的零点个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的极值;

2)若时,函数有且只有一个零点,求实数的值;

3,对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的极值;

2)若时,函数有且只有一个零点,求实数的值;

3,对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长沙市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对某公司的该产品的销量与价格进行了统计分析,得到如下数据和散点图:

定价

10

20

30

40

50

60

年销量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(参考数据:

(1)根据散点图判断, 哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?

(2)根据(1)的判断结果及数据,建立关于的回归方程(方程中的系数均保留两位有效数字).

(3)定价为多少元/ 时,年销售额的预报值最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调增区间;
(3)求方程f(x)=0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆 上,而轴上的投影,且点满足,设动点的轨迹为曲线.

(1)求曲线的方程;

(2)若是曲线上两点,且 为坐标原点,求的面积的最大值.

查看答案和解析>>

同步练习册答案