精英家教网 > 高中数学 > 题目详情
11.经销商经销某种产品,在一个销售周期内,每售出1件产品获得利润500元,未售出的产品每件亏损100元.根据过去的市场记录,得到了60个销售周期的市场需求量的频数分布表:
需求量[100,110)[110,120)[120,130)[130,140)[140,150]
频数61218159
经销商为了下一个销售周期购进了130件产品,以X(100≤X≤150)表示下一个销售周期内的市场需求量,Y表示下一个销售周期内的经销产品的利润.
(1)画出市场需求量的频率分布直方图,并以各组的区间中点值代表该组的各个需求量,估计一个销售周期内的市场需求量的平均数;
(2)根据市场需求量的频数分布表提供的数据,估计下一个销售周期内的经销产品利润Y不少于53000元的概率.

分析 (1)根据频数分布表绘制频率分布直方图,求出一个销售周期内的市场需求量的平均数;
(2)由题意先分段写出,当X∈[100,130)及X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.利润T不少于53000元,解得:110≤X≤150,.再由直方图知需求量X∈[100,110]的频率为0.1,即可求得下一个销售季度的利润Y不少于53000元的概率.

解答 解:(1)频率分布直方图如下图所示:

∵$\frac{105×6+115×12+125×18+135×15+145×9}{60}$=126.5,
∴估计一个销量周期内的市场需求量的平均数为126.5;
(2)当X∈[100,130)时,Y=500X-100(130-X)=600X-13000,
当X∈[130,150]时,Y=500×130=65000,
∴Y=$\left\{\begin{array}{l}{600X-13000,}&{X∈[100,130)}\\{65000,}&{X∈[130,150]}\end{array}\right.$,
令Y≥53000,解得110≤X≤150,
∵100≤X≤110时,一个销量周期内的经销产品的需求量的概率为$\frac{6}{60}$=0.1,
下一个销量周期内的经销产品的利润Y不少于53000元的概率为1-0.1=0.9.

点评 本题考查根据频数分布表绘制样本频率分布直方图以及用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{3x-y≤6}\\{x-y≥-2}\end{array}\right.$,若|4x+6y|≤m恒成立,则实数m的取值范围是(  )
A.(0,4]B.(0,52]C.[52,+∞)D.[36,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C的对边分别是a,b,c,A=60°,7c2-7b2=5a2,则$\frac{b}{c}$的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为(  )
A.$\frac{\sqrt{2}}{3}$+$\frac{\sqrt{2}}{2}$πB.$\sqrt{2}$+$\frac{\sqrt{2}}{2}$πC.$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$πD.2$\sqrt{2}$+3$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={x|x>1},集合A={x|x>2},则∁UA=(  )
A.{x|1<x≤2}B.{x|1<x<2}C.{x|x>2}D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.4C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}是正项等比数列,若a2a9a16=64,则log2a1+log2a2+…+log2a17=(  )
A.34B.32C.30D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面内有9个点,其中4个点在一条直线上,此外无三点共线,连接这样的9个点,可以得到不同的直线的条数为(  )
A.31B.30C.28D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{{{2^x}cos(2π-6x)}}{{{4^x}-1}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案