精英家教网 > 高中数学 > 题目详情
19.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为(  )
A.$\frac{\sqrt{2}}{3}$+$\frac{\sqrt{2}}{2}$πB.$\sqrt{2}$+$\frac{\sqrt{2}}{2}$πC.$\sqrt{2}$+$\frac{3\sqrt{2}}{2}$πD.2$\sqrt{2}$+3$\sqrt{2}$π

分析 由三视图求出圆锥的高和底面半径,再求出截去的底面弧的圆心角,由扇形面积公式求出底面剩余部分的面积,代入锥体体积公式计算可得答案.

解答 解:由三视图得,圆锥底面半径为r=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
圆锥的高h=$\sqrt{{(\sqrt{3})}^{2}-{1}^{2}}$=$\sqrt{2}$,
由俯视图和侧视图可得:
截去的底面弧的圆心角α=2×$\frac{π}{4}$=$\frac{π}{2}$,
底面剩余部分的面积S=$\frac{1}{2}×\sqrt{2}×\sqrt{2}+\frac{1}{2}×\frac{3π}{2}×(\sqrt{2})^{2}$=1+$\frac{3π}{2}$,
所以几何体的体积为:V=$\frac{1}{3}$Sh=$\frac{1}{3}$×(1+$\frac{3π}{2}$)×$\sqrt{2}$=$\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{2}π$,
故选:A.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.集合A={1,2,3,4},B={3,4,5,6},则图中阴影部分表示的集合为(  )
A.B.{1,2}C.{3,4}D.{5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.记等差数列{an}的前n项和为Sn,已知a1=3,且数列{${\sqrt{S_n}}\right.$}也为等差数列,则a11=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式log3(2x-3)>log3(x-2)成立的一个充分不必要条件是(  )
A.x>2B.x>4C.1<x<2D.x>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项均为正数的数列{an}的前n项和为Sn,且an2+2an=4Sn
(1)求Sn
(2)设bn=($\sqrt{n+1}$+$\sqrt{n}$)•$\sqrt{S_n}$,求数列{${\frac{1}{b_n}}\right.$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若数据x1,x2,x3,…xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2;
③两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
④对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关”的把握越大.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.经销商经销某种产品,在一个销售周期内,每售出1件产品获得利润500元,未售出的产品每件亏损100元.根据过去的市场记录,得到了60个销售周期的市场需求量的频数分布表:
需求量[100,110)[110,120)[120,130)[130,140)[140,150]
频数61218159
经销商为了下一个销售周期购进了130件产品,以X(100≤X≤150)表示下一个销售周期内的市场需求量,Y表示下一个销售周期内的经销产品的利润.
(1)画出市场需求量的频率分布直方图,并以各组的区间中点值代表该组的各个需求量,估计一个销售周期内的市场需求量的平均数;
(2)根据市场需求量的频数分布表提供的数据,估计下一个销售周期内的经销产品利润Y不少于53000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太级图形展现了一种互相转化,相对统一的形式美、和谐美.现在定义:能够将圆O的周长和面积同时分为相等的两部分的函数称为圆O的“太极函数”,给出下列命题:
p1:对于任意一个圆O,其对应的“太极函数”不唯一;
p2:f(x)=ex+e-x可能是某个圆的一个“太极函数”;
p3:圆O:(x-1)2+y2=36的一个“太极函数”为f(x)=-ln$\frac{5+x}{7-x}$;
p4:“太极函数”的图象一定是中心对称图形.
其中正确的命题是(  )
A.p1,p2B.p1,p3C.p2,p3D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}({a∈R})$.
(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x-2y+1=0垂直,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.

查看答案和解析>>

同步练习册答案