精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:综合题,等差数列与等比数列
分析:(1)数列{an}的前n项和为Sn=2n+1-2,
(2)由(1)知,cn=an•bn=(3n-1)•2n,利用错位相减法即可求得Tn
解答: 解:(1)数列{an}的前n项和为Sn=2n+1-2,
当n=1时,a1=S1=4-2=2.
当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n
a1=2适合上式.
∴an=2n
∵b1,b3,b11成等比数列,
b32=b1b11,即(2+2d)2=2(2+10d),解得d=3,d=0(舍去),
∴bn=2+3(n-1)=3n-1.
(2)由(1)知,cn=an•bn=(3n-1)•2n
∴Tn=2•21+5•22+8•23+…+(3n-1)•2n①,
2Tn=2•22+5•23+8•24+…+(3n-1)•2n+1②,
①-②,得-Tn=2•2+3•22+3•23+…+3•2n-(3n-1)•2n+1
=3(2+22+23+…+2n)-(3n-1)•2n+1-2
=3
2(1-2n)
1-2
-(3n-1)•2n+1-2
=(4-3n)•2n+1-8,
∴Tn=(3n-4)•2n+1+8.
点评:该题考查等差数列、等比数列的通项公式,考查数列的求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察下列不等式:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
照此规律,写出第n个不等式,然后判断这个不等式是否成立并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量
A1An+1
与向量
BnCn
共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上.
(1)试用a1,b1与n来表示an
(2)设a1=a,b1=-a,且12<a≤15,求数{an}中的最小值的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=lg(m2-8m+15)+(m2-9m+18)i在复平面内表示的点为A,实数m取什么值时,
(1)z为实数?
(2)z为纯虚数?
(3)A位于第二象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(2,2
2
)为抛物线C:y2=2px(p>0)上一点
(1)求抛物线C的标准方程;
(2)设A、B抛物线C上异于原点O的两点且∠AOB=90°,求证:直线AB恒过定点,并求出该定点坐标;
(3)在(2)的条件下,若过原点O向直线AB作垂线,求垂足P(x,y)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)求甲组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-
a
ax+
a
(a>0且a≠1),则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下表后,请应用类比的思想,得出椭圆中的结论:
              圆          椭圆

平面上到动点P到定点O的距离等于定长的点的轨迹 平面上的动点P到两定点F1,F2的距离之和等于定值2a的点的轨迹(2a>|F1F2|)

如图,AB是圆O的直径,直线AC,BD是圆O过A,B的切线,P是圆O上任意一点,
CD是过P的切线,则有“PO2=PC•PD”
椭圆的长轴为AB,O是椭圆的中心,F1,F2是椭圆的焦点,直线AC,BD是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
.
ab
cd
.
=ad-bc,若复数x=
1-i
1+i
,y=
.
4ixi
2x+i
.
,则y=
 

查看答案和解析>>

同步练习册答案