精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量
A1An+1
与向量
BnCn
共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上.
(1)试用a1,b1与n来表示an
(2)设a1=a,b1=-a,且12<a≤15,求数{an}中的最小值的项.
考点:平面向量数量积的运算
专题:综合题,等差数列与等比数列,平面向量及应用
分析:(1)由点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上,得
bn+1-bn
(n+1)-n
=6,即bn+1-bn=6
,由此可求得bn,由向量
A1An+1
与向量
BnCn
共线,得an+1-an=bn,利用累加法可表示an
(2)代入a1=a,b1=-a,得an=a-a(n-1)+3(n-1)(n-2)=3n2-(9+a)n+6+2a.根据二次函数的性质及对称轴范围可求得结果;
解答: 解:(1)∵点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上,
bn+1-bn
(n+1)-n
=6,即bn+1-bn=6

于是数列{bn}是等差数列,故bn=b1+6(n-1).
AnAn+1
=(1,an+1-an),
BnCn
=(-1,-bn),又
AnAn+1
BnCn
共线,
∴1×(-bn)-(-1)(an+1-an)=0,即an+1-an=bn
当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=a1+b1+b2+b3+…+bn-1
=a1+b1(n-1)+3(n-1)(n-2),
当n=1时,上式也成立.
∴an=a1+b1(n-1)+3(n-1)(n-2).
(2)把a1=a,b1=-a代入上式,
an=a-a(n-1)+3(n-1)(n-2)=3n2-(9+a)n+6+2a
∵12<a≤15,∴
7
2
9+a
6
≤4

∴当n=4时,an取最小值,最小值为a4=18-2a.
点评:本题考查平面向量共线的条件、向量的数量积运算、等差数列的通项公式等知识,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠ABC=90°,SA=AD=AB=1,BC=
2

(Ⅰ)求异面直线AD与SC所成角的大小;
(Ⅱ)求直线SC与平面SBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年年初,某微小企业开发某项新产品,先期投入5万元启动资金,计划两年内逐月增加投入,已知2014年1月份投入资金0.1万元,以后每月比上个月多投入资金0.1万元,若该产品每个月的利润组成数列{an},an=
n
5
,   n∈[1,12],n∈N*
5
2
,   n∈[13,24],n∈N*

(Ⅰ)求前n个月的利润总和;
(Ⅱ)设第n个月的利润率bn=
第n月利润
前n-1个月投入的资金总和
,求两年内哪一个月的利润率最大?并求出最大利润率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知:a,b,x均是正数,且a<b,求证:
a+x
b+x
a
b

(2)证明:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需从4门选修课中任选1门选修课选修,对于该年级的甲、乙、丙3名学生:求:
(1)甲选战争风云课而且乙选投资理财课的概率;
(2)这3名学生选择的选修课互不相同的概率;
(3)投资理财选修课被这3名学生选择的人数X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求椭圆25x2+16y2=400的长轴和短轴的长、离心率、焦点坐标和顶点坐标.
(2)现有6道题,其中4道甲类题,2道乙类题,张乐同学从中任取2道题解答.试求:所取的2道题都是甲类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥底面ABCD,BD⊥PC,E是PA的中点.
(Ⅰ)求证:平面PAC⊥平面EBD;
(Ⅱ)若PA=AB=2,直线PB与平面EBD所成角的正弦值为
1
4
,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-2y)7的展开式中第3项的二项式系数是
 
.(用数字作答)

查看答案和解析>>

同步练习册答案