精英家教网 > 高中数学 > 题目详情
18.已知曲线$y=\frac{1}{x}$与直线x=1,x=3,y=0围成的封闭区域为A,直线x=1,x=3,y=0,y=1围成的封闭区域为B,在区域B内任取一点P,该点P落在区域A的概率为$\frac{ln3}{2}$.

分析 首先利用定积分求出封闭图形A/B 的面积,然后利用几何概型的公式求概率.

解答 解:由题意A对应区域的面积为${∫}_{1}^{3}\frac{1}{x}dx$=lnx|${\;}_{1}^{3}$=ln3,B的面积为2,由几何概型的公式得到所求概率为$\frac{ln3}{2}$;
故答案为:$\frac{ln3}{2}$.

点评 本题考查了几何概型的概率求法以及利用定积分求封闭图形的面积;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了解决低收入家庭的住房问题,某城市修建了首批216套住房,已知A,B,C三个社区分别有低收入家庭720户,540户,360户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C社区抽取低收入家庭的户数为(  )
A.48B.36C.24D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.6名教师被随机地平均分配到甲、乙、丙三个不同学校进行调研,且学校甲至少有一名男教师的概率是$\frac{3}{5}$.
(Ⅰ)求6名教师中男、女教师各几人;
(Ⅱ)求学校乙恰好男、女教师各一人的概率;
(Ⅲ)设随机变量ζ表示在学校丙的男教师的人数,求ζ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x∈R|0≤x≤4},B={x∈R|x2≥9},则A∪(∁RB)等于(  )
A.[0,3)B.(-3,4]C.[3,4]D.(-∞,-3)∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(1,-2),从6张大小相同,分别标有号码1,2,3,4,5,6的卡片中有放回地抽取两张,x、y分别表示第一次、第二次抽取的卡片上的号码.
(Ⅰ)求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(Ⅱ)求满足$\overrightarrow{a}$•$\overrightarrow{b}$>0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线y2=2px(p>0)的焦点为F,点A(0,-2),若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△PF1F2的一个顶点P(7,12)在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1上,另外两顶点F1、F2为该双曲线的左、右焦点,则△PF1F2的内心横坐标为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1所有的棱长均为2,A1B=$\sqrt{6}$,A1B⊥AC.
(Ⅰ)求证:A1C1⊥B1C;
(Ⅱ)求直线AC和平面ABB1A1所成角的余弦值.

查看答案和解析>>

同步练习册答案