精英家教网 > 高中数学 > 题目详情
10.设抛物线y2=2px(p>0)的焦点为F,点A(0,-2),若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为$\frac{3\sqrt{2}}{4}$.

分析 根据抛物线方程可表示出焦点F的坐标,进而求得B点的坐标代入抛物线方程求得p,则B点坐标和抛物线准线方程可求,进而求得B到该抛物线准线的距离.

解答 解:依题意可知F坐标为($\frac{p}{2}$,0)
∴B的坐标为($\frac{p}{4}$,-1)代入抛物线方程得$\frac{{p}^{2}}{2}$=1,解得p=$\sqrt{2}$,
∴抛物线准线方程为x=-$\frac{\sqrt{2}}{2}$
所以点B到抛物线准线的距离为$\frac{\sqrt{2}}{4}$+$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{2}}{4}$,
故答案为:$\frac{3\sqrt{2}}{4}$.

点评 本题主要考查抛物线的定义及几何性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出n的值为(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.六个人站成一排照相,要求甲、乙、丙3人有且只有两人相邻,则不同的站法种数有(  )
A.18B.108C.216D.432

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知曲线$y=\frac{1}{x}$与直线x=1,x=3,y=0围成的封闭区域为A,直线x=1,x=3,y=0,y=1围成的封闭区域为B,在区域B内任取一点P,该点P落在区域A的概率为$\frac{ln3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{x+a}{x-a}$ex
(Ⅰ)a=1时,求f(x)在点(0,f(0))处的切线方程;
(Ⅱ)a=0且x>0时,$\frac{f(x)}{lnf(x)}$+m>0恒成立,求m的取值范围;
(Ⅲ)若f(x)在(-1,1)上单调递减,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinx-cosx,x∈R.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)求f(x)的单调增区间;
(Ⅲ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知矩形ADEF和菱形ABCD所在平面互相垂直,如图,其中AF=1,AD=2,∠ADC=$\frac{π}{3}$,点N时线段AD的中点.
(Ⅰ)试问在线段BE上是否存在点M,使得直线AF∥平面MNC?若存在,请证明AF∥平面MNC,并求出$\frac{BM}{ME}$的值,若不存在,请说明理由;
(Ⅱ)求二面角N-CE-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=1,A=30°,$sinBcotA+cosB=\sqrt{3}$,求b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在等比数列{an}中,an+1>an对n∈N*恒成立,且a1a4=8,a2+a3=6.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足,$\frac{a_1}{b_1}+\frac{{3{a_2}}}{b_2}+…+\frac{{({2n-1}){a_n}}}{b_n}=n,({n∈{N^*}})$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案