精英家教网 > 高中数学 > 题目详情
19.“中国齐云山国际养生万人徒步大会”得到了国内外户外运动爱好者的广泛关注,为了使基础设施更加完善,现需对部分区域进行改造.如图,在道路 北侧准备修建一段新步道,新步道开始部分的曲线段MAB是函数y=2sin(ωx+ϕ),(ω>0,0<ϕ<π),x∈[-4,0]的图象,且图象的最高点为A(-1,2).中间部分是长为1千米的直线段BC,且BC∥MN.新步道的最后一部分是以原点O为圆心的一段圆弧CN.
(1)试确定ω,ϕ的值
(2)若计划在扇形OCN区域内划出面积尽可能大的矩形区域建服务站,并要求矩形一边EF紧靠道路MN,顶点Q罗总半径OC上,另一顶点P落在圆弧CN上.记∠PON=θ,请问矩形EFPQ面积最大时θ应取何值,并求出最大面积?

分析 (1)利用正确确定ω,图象过A(-1,2),确定ϕ的值;
(2)求出PF,EF,可得面积,利用三角函数求出最大面积.

解答 解:(1)∵$\frac{T}{4}=-1-({-4})=3$,∴$T=\frac{2π}{ω}=12$,∴$ω=\frac{π}{6}$.┉┉┉┉┉┉┉┉┉┉(2分)
图象过A(-1,2),∴$-\frac{π}{6}+ϕ=\frac{π}{2}+2kπ,k∈Z$,
又$0<ϕ<π∴ϕ=\frac{2π}{3}$.┉┉┉┉┉┉┉┉┉┉┉┉┉(4分)
(2)由(1)知$y=2sin({\frac{π}{6}x+\frac{2π}{3}})$,交y轴于$B({0,\sqrt{3}})$,
又BC=1,BC∥MN,∴$OC=2,∠CON=∠BCO=\frac{π}{3}$.
又∠PON=θ,∴P(2cosθ,2sinθ),$PF=2sinθ,EF=2cosθ-\frac{2sinθ}{{tan{{60}°}}}=2cosθ-\frac{2}{{\sqrt{3}}}sinθ$┉┉┉┉(7分)
∴${S_{EFPQ}}=PF•EF=2sinθ({2cosθ-\frac{2}{{\sqrt{3}}}sinθ})$=$2sin2θ-\frac{4}{{\sqrt{3}}}{sin^2}θ=2sin2θ-\frac{2}{{\sqrt{3}}}({1-cos2θ})$
=$2sin2θ+\frac{2}{{\sqrt{3}}}cos2θ-\frac{{2\sqrt{3}}}{{\sqrt{3}}}=\frac{{4\sqrt{3}}}{{\sqrt{3}}}({\frac{{\sqrt{3}}}{2}sin2θ+\frac{1}{2}cos2θ})-\frac{{2\sqrt{3}}}{3}$=$\frac{{4\sqrt{3}}}{{\sqrt{3}}}sin({2θ+\frac{π}{6}})-\frac{{2\sqrt{3}}}{3}$┉┉┉┉┉(10分)
又$θ∈({0,\frac{π}{3}})$,∴$θ=\frac{π}{6}$时$sin({2θ+\frac{π}{6}})=1$,此时矩形EFPQ面积最大为$\frac{{2\sqrt{3}}}{3}k{m^2}$.┉┉(12分)

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,三角恒等变换、正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=-aln(x+1)+\frac{a+1}{x+1}-a-1$(a∈R)
(1)讨论f(x)在(0,+∞)上的单调性;
(2)若对任意的正整数n都有${(1+\frac{1}{n})^{n-a}}>e$成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如表是某位文科生连续5次月考的历史、政治的成绩,结果如下:
月份91011121
历史(x 分)7981838587
政治(y 分)7779798283
(Ⅰ)求该生5次月考历史成绩的平均分和政治成绩的方差;
(Ⅱ)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S4=(  )
A.29B.30C.33D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=4x的焦点为F,过F的直线l交C于A,B两点,M为线段AB的中点,O为坐标原点.AO、BO的延长线与直线x=-4分别交于P、Q两点.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)连接OM,求△OPQ与△BOM的面积比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=3sin4x+$\sqrt{3}$cos4x图象上所有点的横坐标变为原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)的图象的一条对称轴方程是(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数f(x)的图象向右平移$\frac{π}{6}$个所得图象对应的函数为y=g(x),则关于函数为y=g(x)的性质,下列说法不正确的是(  )
A.g(x)为奇函数B.关于直线$x=\frac{π}{2}$对称
C.关于点(π,0)对称D.在$(-\frac{π}{6},\frac{π}{4})$上递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,离心率为$\frac{{2\sqrt{5}}}{5}$,抛物线G:y2=2px(p>0)的焦点F与椭圆E的右焦点重合,若斜率为k的直线l过抛物线G的焦点F与椭圆E相交于A,B两点,与抛物线G相交于C,D两点.
(Ⅰ)求椭圆E及抛物线G的方程;
(Ⅱ)是否存在实数λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$为常数?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读下边的程序框图,运行相应的程序,若输出S的值为16,则输入m的值可以为(  )
A.4B.6C.7D.8

查看答案和解析>>

同步练习册答案