分析 sinα+cosα=$\frac{1-\sqrt{3}}{2}$(0<α<π),两边平方,化简整理得出,2sinαcosα=-$\frac{\sqrt{3}}{2}$<0,判断出sinα>0,所以cosα<0.cosα-sinα<0,整体求出cosα-sinα,再利用二倍角余弦公式求解.
解答 解:∵sinα+cosα=$\frac{1-\sqrt{3}}{2}$(0<α<π),两边平方,得出1+2sinαcosα=$\frac{2-\sqrt{3}}{2}$,
∴2sinαcosα=-$\frac{\sqrt{3}}{2}$<0,
∵0<α<π,
∴sinα>0,cosα<0.cosα-sinα<0,
∴(cosα-sinα)2=1-2sinαcosα=1+$\frac{\sqrt{3}}{2}$,
∴cosα-sinα=-$\sqrt{1+\frac{\sqrt{3}}{2}}$,
∴cos2α=cos2α-sin2α=(cosα-sinα)(sinα+cosα)=(-$\sqrt{1+\frac{\sqrt{3}}{4}}$)×$\frac{1-\sqrt{3}}{2}$=$\sqrt{\frac{(\sqrt{3}+1)^{2}}{4}}$×$\frac{\sqrt{3}-1}{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本小题主要考查同角三角函数基本关系式的应用和二倍角公式的应用.应用三角函数公式时,要恰当选择,灵活应用,选择恰当可以达到事半功倍的作用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=-|x-1| | C. | y=ex-e-x | D. | y=ln$\frac{1-x}{1+x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com