精英家教网 > 高中数学 > 题目详情
12.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF$\stackrel{∥}{=}$2CE,G是线段BF上一点,AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求$\frac{BG}{BF}$的值;
(Ⅱ)求二面角A-BF-E的大小的正弦值.

分析 (Ⅰ)由平面ABC⊥平面ACEF,且平面ABC∩平面ACEF=AC,可得AF⊥AC,则AF⊥平面ABC,得到平面ABF⊥平面ABC,过G作GD⊥AB,垂足为D,则GD⊥平面ABC,连接CD,可证得则四边形GDCF为平行四边形,从而得到GD=CE=$\frac{1}{2}AF$,则G为BF的中点,得到$\frac{BG}{BF}$的值;
(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角E-BF-A的余弦值.

解答 解:(Ⅰ)∵平面ABC⊥平面ACEF,且平面ABC∩平面ACEF=AC,
AF⊥AC,∴AF⊥平面ABC,则平面ABF⊥平面ABC,
过G作GD⊥AB,垂足为D,则GD⊥平面ABC,连接CD,
由GD⊥平面ABC,AF⊥平面ABC,AF∥CE,可得GD∥CE,
又EG∥平面ABC,∴EG∥CD,则四边形GDCF为平行四边形,
∴GD=CE=$\frac{1}{2}AF$,
∴$\frac{BG}{BF}$=$\frac{1}{2}$;
(Ⅱ)由(Ⅰ)知AF⊥AB,AF⊥BC
∵BC⊥AB,∴BC⊥平面ABF.
如图,以A为原点,建立空间直角坐标系A-xyz.
则F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),
$\overrightarrow{BC}$=(0,2,0)是平面ABF的一个法向量.
设平面BEF的法向量$\overrightarrow{n}$=(x,y,z),则
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=2y+z=0}\\{\overrightarrow{n}•\overrightarrow{BF}=-2x+2z=0}\end{array}\right.$,令y=1,则z=-2,x=-2,$\overrightarrow{n}$=(-2,1,-2),
∴cos<$\overrightarrow{n}$,$\overrightarrow{BC}$>=$\frac{\overrightarrow{n}•\overrightarrow{BC}}{|\overrightarrow{n}||\overrightarrow{BC}|}$=$\frac{1}{3}$,
∴二面角A-BF-E的正弦值为$\sqrt{1-(\frac{1}{3})^{2}}=\frac{2\sqrt{2}}{3}$.

点评 本题主要考查线面平行的判定以及空间二面角的计算,建立空间直角坐标系,利用向量法是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列选项中,说法正确的是(  )
A.命题“?x0∈R,x02-x0≤0”的否定为“?x∈R,x2-x>0”
B.命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题
C.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件
D.若非零向量$\overrightarrow a$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,则$\overrightarrow a$与$\overrightarrow b$共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题“?x∈N,x2>1”的否定为?x0∈N,x02≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=f(x);当x>$\frac{1}{2}$时,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$).则f(2017)=(  )
A.-2B.-2017C.2017D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{3}$-y2=1的两焦点分别为F1,F2,P为双曲线上的一点,若PF1与双曲线的一条渐近线平行,则cos∠F1PF2=(  )
A.$-\frac{11}{13}$B.$-\frac{11}{12}$C.$-\frac{7}{12}$D.$-\frac{1}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.100张卡片上分别写有1,2,3,…,100,从中任取1张,则这张卡片上的数是6的倍数的概率是$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,A1B与AB1交于点D,A1C与AC1交于点E.
求证:(1)DE∥平面B1BCC1
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=|lnx|,a,b为实数,且0<a<b.
(1)求方程f(x)=1的解;     
(2)若a,b满足f(a)=f(b),求证:①a•b=1;②$\frac{a+b}{2}>1$;        
(3)在(2)的条件下,求证:由关系式$f(b)=2f(\frac{a+b}{2})$所得到的关于b的方程h(b)=0,存在b0∈(3,4),使h(b0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的方程e2x+ex-a=0有实数解,则实数a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.(1,2)D.(1,+∞)

查看答案和解析>>

同步练习册答案