精英家教网 > 高中数学 > 题目详情
已知正项数列{an}满足:an+1=
1
2
(an+
1
an
)(n∈N+).
(1)求a1的范围,使得an+1<an恒成立;
(2)若a1=
3
2
,证明an<1+
1
2n+1
(n∈N+,n≥2);
(3)(理)若a1=
3
2
,证明:
a1
a2
+
a2
a3
+
a3
a4
+…+
an
an+1
-n<
2
+1.
分析:(1)由an+1=
1
2
(an+
1
an
),得an+1-an=
1
2
(-an+
1
an
),根据an+1<an,可得-an+
1
an
<0,由此可求a1的范围;
(2)利用数学归纳法证明:若a1=
3
2
,得1<a2=
13
12
<1+
1
23
;假设n=k时成立,即ak<1+
1
2k+1
(k∈N+,k≥2),构造函数f(x)=
1
2
(x+
1
x
)
,易知f(x)在(1,+∞)上单调增,从而可知n=k+1时结论成立;
(3)由an+1=
1
2
(an+
1
an
),可得
an
an+1
-1
=
1-
1
an+12
,构造函数g(x)=
1-
1
x2
,g(x)在(1,+∞)上单调递增,从而可得
an
an+1
-1
=
1-
1
an+12
2
2n+2+1
1
2n
,由此可证结论.
解答:(1)解:由an+1=
1
2
(an+
1
an
),得an+1-an=
1
2
(-an+
1
an
),
由an+1<an,即-an+
1
an
<0,
所以an>1或an<-1(舍)
所以a1>1时,an+1<an
(2)证明:若a1=
3
2
,得1<a2=
13
12
<1+
1
23

假设n=k时成立,即ak<1+
1
2k+1
(k∈N+,k≥2);
构造函数f(x)=
1
2
(x+
1
x
)
,易知f(x)在(1,+∞)上单调增
则n=k+1时,ak+1=f(ak)<f(1+
1
2k+1
)<1+
1
2k+2

即ak+1=f(ak)<1+
1
2k+2

由以上归纳可知an<1+
1
2n+1
(n∈N+,n≥2);
(3)证明:由an+1=
1
2
(an+
1
an
),得an=an+1+
an+12-1

an
an+1
-1
=
1-
1
an+12

构造函数g(x)=
1-
1
x2
,g(x)在(1,+∞)上单调递增
an
an+1
-1
=
1-
1
an+12
2
2n+2+1
1
2n

a1
a2
+
a2
a3
+
a3
a4
+…+
an
an+1
-n=(
a1
a2
-1)+(
a2
a3
-1)+(
a3
a4
-1)+…+(
an
an+1
-1)
1
2
+
1
22
+…+
1
2n
=
1
2
[1-
1
2n
]
1-
1
2
1
2
1-
1
2
=
2
+1
a1
a2
+
a2
a3
+
a3
a4
+…+
an
an+1
-n<
2
+1.
点评:本题考查数列递推式,考查数学归纳法,考查不等式的证明,考查放缩法的运用,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案