分析:(1)由a
n+1=
(a
n+
),得a
n+1-a
n=
(-a
n+
),根据a
n+1<a
n,可得-a
n+
<0,由此可求a
1的范围;
(2)利用数学归纳法证明:若a
1=
,得1<a
2=
<1+
;假设n=k时成立,即a
k<1+
(k∈N
+,k≥2),构造函数f(x)=
(x+),易知f(x)在(1,+∞)上单调增,从而可知n=k+1时结论成立;
(3)由a
n+1=
(a
n+
),可得
-1=
,构造函数g(x)=
,g(x)在(1,+∞)上单调递增,从而可得
-1=
<
<
,由此可证结论.
解答:(1)解:由a
n+1=
(a
n+
),得a
n+1-a
n=
(-a
n+
),
由a
n+1<a
n,即-a
n+
<0,
所以a
n>1或a
n<-1(舍)
所以a
1>1时,a
n+1<a
n.
(2)证明:若a
1=
,得1<a
2=
<1+
假设n=k时成立,即a
k<1+
(k∈N
+,k≥2);
构造函数f(x)=
(x+),易知f(x)在(1,+∞)上单调增
则n=k+1时,a
k+1=f(a
k)<f(1+
)<1+
即a
k+1=f(a
k)<1+
由以上归纳可知a
n<1+
(n∈N
+,n≥2);
(3)证明:由a
n+1=
(a
n+
),得
an=an+1+∴
-1=
构造函数g(x)=
,g(x)在(1,+∞)上单调递增
∴
-1=
<
<
∴
+
+
+…+
-n=(
-1)+(
-1)+(
-1)+…+(
-1)
<
+
+…+
=
<
=
+1
∴
+
+
+…+
-n<
+1.
点评:本题考查数列递推式,考查数学归纳法,考查不等式的证明,考查放缩法的运用,综合性强.