精英家教网 > 高中数学 > 题目详情
10.某网站对是否赞成延长退休话题对500位网友调查结果如下:
性别
结果
总计
赞成403070
不赞成160270430
总计200300500
(1)能否在犯错误概率不超过0.01前提下,认为“该调查结果”与“性别”有关;
(2)若从赞成的网友中按性别分层抽样方法抽取7人,再从被抽7人中再随机抽取2人,求这2人中有女网友的概率.
附:x2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(x2≥k0 )0.100.050.01
k02.7063.846.635

分析 (1)利用所给数据,求出x0,与临界值比较,即可得出能在犯错误概率不超过0.01前提下,认为“该调查结果”与“性别”有关;
(2)利用列举法确定基本事件的个数,根据概率公式,可得结论.

解答 解:(1)x2=$\frac{500(40×270-30×160)^{2}}{200×300×70×430}$≈9.967>6.635,
能在犯错误概率不超过0.01前提下,认为“该调查结果”与“性别”有关…(6分)
(2)共取男网友4人,A1,A2,A3,A4,女网友3个B1,B2,B3…(8分)
从这7人取2个共有21种,分别如下,A1A2 A1A3 A1A4 A1B1 A1B2 A1B3 A2A3 A2A4 A2B1 A2B2 A2B3 A3A4 A3B1 A3B2 A3B3 A4B1 A4B2 A4B3 B1B2 B1B3 B2B3有女网友的事件为M,基本事件为15,
P(M)=$\frac{15}{21}$=$\frac{5}{7}$…(12分)

点评 本题考查概率知识的运用,考查独立性检验知识,列举法确定基本事件是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.等边三角形ABC中,AB=2,E,F分别是边AB,AC上运动,若$\frac{{{S_{△AEF}}}}{{{S_{△ABC}}}}=\frac{1}{3}$,则EF长度的最小值为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{4}{3}$C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n和为Sn,a5=9,S5=25,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$.
(1)试用“五点法”画出函数f(x)在区间的简图;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数g(x)=f(x)+m的最小值为2,试求出函数g(x)的最大值并指出x取何值时,函数g(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径为20mm,中间有边长为5mm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?x∈R,x2+x+1<0,下列说法错误的是(  )
A.若¬p:?x∈R,x2+x+1≥0B.p为假命题
C.p∨¬p为假命题D.¬p为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着互联网经济逐步被人们接受,网上购物的人群越来越多,网上交易额也逐年增加,某地一建设银行连续五年的网银交易额统计表,如表所示:
年份x20122013201420152016
网上交易额y(亿元)567810
经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,工作人员将上表的数据进行了处理,t=x-2011,z=y-5,得到如表:
时间代号t12345
z01235
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地网银交易额可达多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1≤x<3},B={x|x2≥4},则A∩(∁RB)=(  )
A.{x|1≤x<2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4x2-kx-8,x∈[5,20]
(Ⅰ)若函数f(x)在[5,20]上具有单调性,求实数k的取值范围;
(Ⅱ)若函数f(x)在[5,20]上恒大于零,求实数k的取值范围.

查看答案和解析>>

同步练习册答案