精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a为实数.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:2f(x2)-x1>0.

分析 (Ⅰ)求导数,分类讨论,利用导数的正负研究函数f(x)的单调性;
(Ⅱ)所证问题转化为(1+x2)ln(x2+1)-$\frac{1}{2}$x2>0,令g(x)=(1+x)ln(x+1)-$\frac{1}{2}$x,x∈(0,1),根据函数的单调性证明即可.

解答 解:(Ⅰ)函数f(x)的定义域为(-1,+∞),$f′(x)=\frac{a}{x+1}+x-1$=$\frac{{x}^{2}+a-1}{x+1}$.
①当a-1≥0时,即a≥1时,f'(x)≥0,f(x)在(-1,+∞)上单调递增;
②当0<a<1时,由f'(x)=0得${x}_{1}=-\sqrt{1-a}$,${x}_{2}=\sqrt{1-a}$,
故f(x)在(-1,-$\sqrt{1-a}$)上单调递增,在(-$\sqrt{1-a}$,$\sqrt{1-a}$)上单调递减,
在($\sqrt{1-a}$,+∞)上单调递增;
③当a<0时,由f'(x)=0得x1=$\sqrt{1-a}$,x2=-$\sqrt{1-a}$(舍)
f(x)在(-1,$\sqrt{1-a}$)上单调递减,在($\sqrt{1-a}$,+∞)上单调递增.
(Ⅱ)证明:由(Ⅰ)得若函数f(x)有两个极值点x1,x2,且x1<x2,则0<a<1,${x}_{1}=-\sqrt{1-a}$,${x}_{2}=\sqrt{1-a}$,
∴x1+x2=0,x1x2=a-1且x2∈(0,1),
要证2f(x2)-x1>0?f(x2)+$\frac{1}{2}$x2>0?aln(x2+1)+$\frac{1}{2}{{x}_{2}}^{2}$-$\frac{1}{2}$x2>0?(1+x2)ln(x2+1)-$\frac{1}{2}$x2>0,
令g(x)=(1+x)ln(x+1)-$\frac{1}{2}$x,x∈(0,1),
∵g′(x)=ln(x+1)+$\frac{1}{2}$>0,
∴g(x)在(0,1)递增,
∴g(x)>g(0)=0,
∴命题得证.

点评 本题考查导数知识的运用,考查函数的单调性,考查函数的构造与运用,转化思想.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.从5名男生和3名女生中选5人担任5门不同学科的课代表,分别求符合下列条件的方法数:
(1)女生甲担任语文课代表;
(2)男生乙必须是课代表,但不担任数学课代表.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面的程序运行后的作用是(  )
A.输出两个变量A和B的值
B.把变量A的值赋给变量B,并输出A和B的值
C.把变量B的值赋给变量A,并输出A和B的值
D.交换两个变量A和B的值,并输出交换后的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M(-2,b)在不等式2x-3y+5<0表示的平面区域内,则b的取值范围是(  )
A.b>$\frac{1}{3}$B.b>-9C.b<1D.b≤$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(2,t)$,$\overrightarrow b=(1,2)$,若t=t1时,$\overrightarrow a∥\overrightarrow b$;若t=t2时,$\overrightarrow a⊥\overrightarrow b$,则t1,t2的值分别为(  )
A.-4,-1B.-4,1C.4,-1D.4,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系为(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn>0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.则数列{an•bn}的前n项和Tn为(  )
A.3n-1B.2n+1C.n•3nD.-2n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在(1+x+x2n=${D}_{n}^{0}$$+{D}_{n}^{1}$x$+{D}_{n}^{2}$x2+…$+{D}_{n}^{r}$xr+…$+{D}_{n}^{2n-1}$x2n-1$+{D}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$…,D${\;}_{n}^{r}$…,D${\;}_{n}^{2n}$叫做三项式系数
(1)求D${\;}_{4}^{0}$$+{D}_{4}^{2}$$+{D}_{4}^{4}$$+{D}_{4}^{6}$$+{D}_{4}^{8}$的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C${\;}_{2n}^{n}$=(C${\;}_{n}^{0}$)2+(C${\;}_{n}^{1}$)2+(C${\;}_{n}^{2}$)2+…+(C${\;}_{n}^{n}$)2,利用上述思想方法,请计算D${\;}_{2017}^{0}$C${\;}_{2017}^{0}$-D${\;}_{2017}^{1}$C${\;}_{2017}^{1}$+D${\;}_{2017}^{2}$C${\;}_{2017}^{2}$-…+(-1)rD${\;}_{2017}^{r}$C${\;}_{2017}^{r}$+..$+{D}_{2017}^{2016}$C${\;}_{2017}^{2016}$$-{D}_{2017}^{2017}$C${\;}_{2017}^{2017}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,AD⊥平面ABC,CE∥AD,且AB=AC=CE=2AD.
(1)试在线段BE上确定一点M,使得DM∥平面ABC;
(2)若AB⊥AC,求平面BDE与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案