精英家教网 > 高中数学 > 题目详情
当x>1时,不等式mx2+mx+1≥x恒成立,则实数m的取值范围是(  )
A.[3+2
2
,+∞)
B.(-∞,3+2
2
]
C.[3-2
2
,+∞)
D.(-∞,3-2
2
]
由不等式mx2+mx+1≥x得m(x2+x)≥x-1,又x2+x>0,所以有m≥
x-1
x2+x
在(1,+∞)上恒成立,
x-1
x2+x
=
1
x2+x
x-1
=
1
x+
2
x-1
+2
=
1
x-1+
2
x-1
+3

x-1+
2
x-1
+3≥3+2
2
,当且仅当x=1+
2
时等号成立,即
1
x-1+
2
x-1
+3
1
3+2
2
=3-2
2
,所以实数m的取值范围是[3-2
2
,+∞).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x3+x,则当x<0时,f(x)=(  )
A.f(x)=x3-xB.f(x)=-x3-xC.f(x)=-x3+xD.f(x)=x3+x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是奇函数,又,
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断下列函数的奇偶性:
(1)   (2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a2b),g(x)>0的解集是(),
f(xg(x)>0的解集是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
对于一切x∈[
1
4
1
2
]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2,g(x)=(
1
2
x-m,若对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax+b
x2+1
在点M(1,f(1))
处的切线方程为x-y-1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=lnx,证明:g(x)≥f(x)对x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1-
2
3x+1

(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;
(2)用单调性定义证明:函数f(x)在其定义域上都是增函数;
(3)解不等式:f(3m2-m+1)+f(2m-3)<0.

查看答案和解析>>

同步练习册答案