精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
2
3x+1

(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;
(2)用单调性定义证明:函数f(x)在其定义域上都是增函数;
(3)解不等式:f(3m2-m+1)+f(2m-3)<0.
(1)∵函数f(x)=1-
2
3x+1
=
3x+1-2
3x+1
=
3x-1
3x+1

可得3x>0,3x+1≠0,∴函数f(x)的定义域为R.
再根据f(-x)=
3-x-1
3-x+1
=
1-3x
1+3x
=-f(x),
故f(x)是定义在R上的奇函数.
(2)证明:任取x1<x2,则f(x1)-f(x2)=1-
2
3x1+1
-
(1-
2
3x2+1
)

=
2
3x2+1
-
2
3x1+1
=2×
3x1-3x2
(3x1+1)(3x2+1)

由题设x1<x2可得0<3x13x2,∴3x1-3x2<0,且 3x1+1>0,3x2+1>0,
故有 f(x1)<f(x2),
∴函数f(x)在其定义域R上是增函数.
(3)由f(3m2-m+1)+f(2m-3)<0,得f(3m2-m+1)<-f(2m-3).
∵函数f(x)为奇函数,
∴-f(2m-3)=f(3-2m),不等式即f(3m2-m+1)<f(3-2m).
由(2)已证得函数f(x)在R上是增函数,
∴f(3m2-m+1)<f(3-2m)等价于 3m2-m+1<3-2m,
即3m2+m-2<0,即(3m-2)(m+1)<0,∴-1<m<
2
3

不等式f(3m2-m+1)+f(2m-3)<0的解集为{m|-1<m<
2
3
}
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x
(1)求函数f(x)的解析式,并画出函数f(x)的图象.
(2)根据图象写出的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当x>1时,不等式mx2+mx+1≥x恒成立,则实数m的取值范围是(  )
A.[3+2
2
,+∞)
B.(-∞,3+2
2
]
C.[3-2
2
,+∞)
D.(-∞,3-2
2
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题:“任意x∈R,不等式ax2-x+1>0恒成立”为真命题,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
ax+3,(x≤1)
1
x
+1,(x>1)
,满足对任意定义域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0总成立,则实数a的取值范围是(  )
A.(-∞,0)B.[-1,0)C.(-1,0)D.(-1,+∞),

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数f(x)=2x+
a
2x

(1)若f(x)为偶函数,求a的值;
(2)若f(x)在[0,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
log2|x|
x
的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(2)=0,则xf(x)<0(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数f(x),满足f(x+
1
2
)=-f(x+
3
2
)
,且在区间[-1,0]上为递增,则(  )
A.f(3)<f(
2
)<f(2)
B.f(2)<f(3)<f(
2
C.f(3)<f(2)<f(
2
D.f(
2
)<f(2)<f(3)

查看答案和解析>>

同步练习册答案