精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=sin2xcos2x+sin22x-$\frac{1}{2}$.
(1)求函数f(x)的最小正周期及对称中心;
(2)在△ABC中,角B为钝角,角A、B、C的对边分别为a、b、c,f($\frac{B}{4}$)=$\frac{\sqrt{2}}{2}$,且sinC=$\sqrt{2}$sinA,S△ABC=4,求c的值.

分析 (1)利用二倍角公式、两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性以及它的图象的对称性,得出结论.
(2)由题意求得$sin(B-\frac{π}{4})=1$,结合$\frac{π}{2}$<B<π,∴求得$B=\frac{3π}{4}$.利用正弦定理求得c=2a,再利用S△ABC=4,求得c的值.

解答 解:(Ⅰ)函数f(x)=sin2xcos2x+sin22x-$\frac{1}{2}$=$\frac{1}{2}sin4x-\frac{1}{2}cos4x$=$\frac{{\sqrt{2}}}{2}sin(4x-\frac{π}{4})$,
所以函数f(x)的最小正周期为$T=\frac{2π}{4}=\frac{π}{2}$.
由$4x-\frac{π}{4}=kπ(k∈{Z})$,解得$x=\frac{kπ}{4}+\frac{π}{16}(k∈{Z})$,
所以函数f(x)的图象的对称中心为$(\frac{kπ}{4}+\frac{π}{16},0)(k∈Z)$.
(Ⅱ)由(Ⅰ)知f(x)=$\frac{{\sqrt{2}}}{2}sin(4x-\frac{π}{4})$,
∵$f(\frac{B}{4})=\frac{{\sqrt{2}}}{2}$,所以$f(\frac{B}{4})=\frac{{\sqrt{2}}}{2}sin(B-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,∴$sin(B-\frac{π}{4})=1$.
∵$\frac{π}{2}$<B<π,∴$B=\frac{3π}{4}$.
∵sinC=$\sqrt{2}$sinA,∴c=2a.
∵${S_{△ABC}}=\frac{1}{2}•a•\sqrt{2}a•\frac{{\sqrt{2}}}{2}=4$,$a=2\sqrt{2}$,∴c=4.

点评 本题主要考查二倍角公式、两角和的正弦公式的应用,正弦函数的周期性以及它的图象的对称性,正弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对于函数f(x)=x3+ax2-x+1,给出下列命题:
①该函数必有2个极值;       ②该函数的极大值必大于1;
③该函数的极小值必小于1;   ④方程f(x)=0一定有三个不等的实数根.
则正确的命题序号为:①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数$f(x)=({1+\sqrt{3}tanx})cosx,0≤x≤\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}+1$D.$\sqrt{3}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{an}满足a1=9,${a_{n+1}}=\frac{1}{3}{a_n}$,(n∈N*),则a5=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个结论中,正确的个数有(  )
(1)${8^{\frac{2}{3}}}>{(\frac{16}{81})^{-\frac{3}{4}}}$;(2)ln10>lne;(3)0.8-0.1>0.8-0.2;(4)80.1>90.1
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2-ac.
(1)求B的大小;
(2)设∠BAC的平分线AD交BC于D,AD=2$\sqrt{3}$,BD=1,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{i-5}{1+i}$(i是虚数单位)的虚部是(  )
A.-2B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知偶函数f(x)在区间[0,+∞)上单调递增,则$f(x-2)<f(\frac{1}{2})$的解集是(  )
A.(0,1)B.(1,2)C.$(\frac{3}{2},\frac{5}{2})$D.$(\frac{5}{2},\frac{7}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项为6,且满足an=3an-1-6(n>2).
(1)求证数列{an-3}为等比数列,并求出数列{an}的通项公式.
(2)设bn=an+2n-3,求数列{bn}的通项公式及前n项和Tn

查看答案和解析>>

同步练习册答案