分析 (1)由题知a1-3=3,$\frac{{a}_{n}-3}{{a}_{n-1}-3}$=$\frac{3{a}_{n-1}-6-3}{{a}_{n-1}-3}$=3,从而证明数列{an-3} 是以3为首项,以3为公比的等比数列,由此能求出数列{an}的通项公式.
(2)由${b_n}={3^n}+2n$,利用分组求和法能求出数列{bn}的通项公式及前n项和Tn.
解答 解:(1)∵数列{an}的首项为6,
∴由题知a1-3=3.…1分
∵an=3an-1-6(n>2),
∴$\frac{{a}_{n}-3}{{a}_{n-1}-3}$=$\frac{3{a}_{n-1}-6-3}{{a}_{n-1}-3}$=$\frac{3({a}_{n-1}-3)}{{a}_{n-1}-3}$=3,…3分
$\therefore$数列{an-3} 是以3为首项,以3为公比的等比数列.…4分
∴${a_n}-3=3×{3^{n-1}}={3^n}$ …5分
∴${a_n}={3^n}+3$.…6分
(2)∵bn=an+2n-3,
∴${b_n}={3^n}+2n$ …7分
∴Tn=b1+b2+b3+…+bn=(31+2×1)+(32+2×2)+(33+2×3)+…+(3n+2×n) …8分
=(31+32+33+…+3n)+2(1+2+3+…+n) …9分
=$\frac{{3(1-{3^n})}}{1-3}+2×\frac{n(1+n)}{2}$ …10分
=$\frac{{{3^{n+1}}-3}}{2}+{n^2}+n$.…12分
点评 本题考查等比数列的证明,考查数列的通项公式及前n项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{n+1}$A${\;}_{n+1}^{n+1}$ | B. | A${\;}_{n}^{n}$ | C. | nA${\;}_{n-1}^{n-1}$ | D. | ${A}_{n+1}^{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{5\sqrt{3}}}{4}$ | B. | $\frac{{3-\sqrt{3}}}{8}$ | C. | $\frac{{3+\sqrt{3}}}{8}$ | D. | $\frac{{3\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ | $\frac{7π}{3}$ | $\frac{17π}{6}$ |
| y | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com