精英家教网 > 高中数学 > 题目详情
13.下列四个结论中,正确的个数有(  )
(1)${8^{\frac{2}{3}}}>{(\frac{16}{81})^{-\frac{3}{4}}}$;(2)ln10>lne;(3)0.8-0.1>0.8-0.2;(4)80.1>90.1
A.1个B.2个C.3个D.4个

分析 根据指数函数幂函数和对数函数的单调性即可判断.

解答 解:(1)${8}^{\frac{2}{3}}$=4=$\frac{32}{8}$,$(\frac{16}{81})^{-\frac{3}{4}}$=$(\frac{2}{3})^{4×(-\frac{3}{4})}$=$\frac{27}{8}$,∴${8^{\frac{2}{3}}}>{(\frac{16}{81})^{-\frac{3}{4}}}$;
(2)∵y=lnx为增函数,10>e,∴ln10>lne;
(3)∵y=0.8x为减函数,∴0.8-0.1<0.8-0.2
(4)∵y=x0.1为增函数,∴80.1<90.1
故正确的个数为2个,
故选:B.

点评 本题考查了指数函数幂函数和对数函数的单调性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{2}}}{2}$,其中一个焦点坐标为$(\sqrt{2},0)$.
(1)求椭圆M的标准方程;
(2)若直线y=x+m与椭圆M交于A,B两点,且△OAB(O为坐标原点)面积为$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-2y+1≥0}\\{|x|-y-1≤0}\end{array}}\right.$,则z=$\frac{2x+y+2}{x}$的取值范围是(-∞,0]∪[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(sinωx,2cosωx),$\overrightarrow{b}$=(cosωx,-$\frac{2\sqrt{3}}{3}$cosωx)(ω>0),函数f(x)=$\overrightarrow{a}$•($\sqrt{3}\overrightarrow{b}$+$\overrightarrow{a}$)-1,且函数f(x)的最小正周期为$\frac{π}{2}$.
(1)求函数f(x)的解析式及单调增区间;
(2)设△ABC的三边为a、b、c.已知sinA,sinB,sinC成等比数列,若方程f(B)=k有两个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F是圆(x-1)2+y2=1的圆心,过椭圆上的动点P作圆两条切线分别交y轴于M,N(与P点不重合)两点.
(1)求椭圆方程;
(2)求线段MN长的最大值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2xcos2x+sin22x-$\frac{1}{2}$.
(1)求函数f(x)的最小正周期及对称中心;
(2)在△ABC中,角B为钝角,角A、B、C的对边分别为a、b、c,f($\frac{B}{4}$)=$\frac{\sqrt{2}}{2}$,且sinC=$\sqrt{2}$sinA,S△ABC=4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,函数$f(x)=2asin(2x+\frac{π}{6})-2a+b$,当$x∈[0,\;\frac{π}{2}]$时,-5≤f(x)≤1.
①求常数a.b值.
②设g(x)=lg[f(x)+3],求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当x=a时,函数y=ln(x+2)-x取到极大值b,则ab等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知c=1,A=60°,C=45°,则△ABC的面积为(  )
A.$\frac{{5\sqrt{3}}}{4}$B.$\frac{{3-\sqrt{3}}}{8}$C.$\frac{{3+\sqrt{3}}}{8}$D.$\frac{{3\sqrt{3}}}{8}$

查看答案和解析>>

同步练习册答案